Coherent_Speech / app.py
S0h9l's picture
Update app.py
ebb66c9
raw
history blame
2.34 kB
import gradio as gr
import time
import whisper
import cohere
#from dotenv import load_dotenv
#load_dotenv()
co = cohere.Client('0brA5yZUeNlQM98z5h4XQAiYYpCGNMbGPjk5ghE6')
model = whisper.load_model("tiny")
def transcribe(audio):
#time.sleep(3)
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions(fp16 = False)
result = whisper.decode(model, mel, options)
#cohere
response = co.generate(
model='xlarge',
prompt=f'This program will generate an introductory paragraph to a blog post given a blog title, audience, and tone of voice.\n--\nBlog Title: Best Activities in Toronto\nAudience: Millennials\nTone of Voice: Lighthearted\nFirst Paragraph: Looking for fun things to do in Toronto? When it comes to exploring Canada\'s largest city, there\'s an ever-evolving set of activities to choose from. Whether you\'re looking to visit a local museum or sample the city\'s varied cuisine, there is plenty to fill any itinerary. In this blog post, I\'ll share some of my favorite recommendations\n--\nBlog Title: Mastering Dynamic Programming\nAudience: Developers\nTone: Informative\nFirst Paragraph: In this piece, we\'ll help you understand the fundamentals of dynamic programming, and when to apply this optimization technique. We\'ll break down bottom-up and top-down approaches to solve dynamic programming problems.\n--\nBlog Title: {result.text}\nAudience: Athletes\nTone: Enthusiastic\nFirst Paragraph:',
max_tokens=100,
temperature=0.8,
k=0,
p=1,
frequency_penalty=0,
presence_penalty=0,
stop_sequences=["--"],
return_likelihoods='NONE')
#result.text
reptxt = response.generations[0].text.strip("--")
return reptxt
gr.Interface(
title = 'OpenAI Whisper ASR Gradio Web UI',
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath")
],
outputs=[
"textbox"
],
live=True).launch()