Johannes
initial changes
eea614c
import gradio as gr
import numpy as np
import torch
import jax
import jax.numpy as jnp
from diffusers import StableDiffusionInpaintPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
from diffusers import (
UniPCMultistepScheduler,
FlaxStableDiffusionControlNetPipeline,
FlaxControlNetModel,
)
import colorsys
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"mfidabel/controlnet-segment-anything", dtype=jnp.float32
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
revision="flax",
dtype=jnp.bfloat16,
)
params["controlnet"] = controlnet_params
p_params = replicate(params)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
with gr.Blocks() as demo:
gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation")
gr.Markdown(
"""
We have trained a JAX ControlNet model with
To try the demo, upload an image and select object(s) you want to inpaint.
Write a prompt & a negative prompt to control the inpainting.
Click on the "Submit" button to inpaint the selected object(s).
Check "Background" to inpaint the background instead of the selected object(s).
If the demo is slow, clone the space to your own HF account and run on a GPU.
"""
)
with gr.Row():
input_img = gr.Image(label="Input")
mask_img = gr.Image(label="Mask", interactive=False)
output_img = gr.Image(label="Output", interactive=False)
with gr.Row():
prompt_text = gr.Textbox(lines=1, label="Prompt")
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear")
def generate_mask(image, evt: gr.SelectData):
predictor.set_image(image)
input_point = np.array([120, 21])
input_label = np.ones(input_point.shape[0])
mask, _, _ = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
# clear torch cache
torch.cuda.empty_cache()
mask = Image.fromarray(mask[0, :, :])
segs = mask_generator.generate(image)
boolean_masks = [s["segmentation"] for s in segs]
finseg = np.zeros(
(boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8
)
# Loop over the boolean masks and assign a unique color to each class
for class_id, boolean_mask in enumerate(boolean_masks):
hue = class_id * 1.0 / len(boolean_masks)
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1))
rgb_mask = np.zeros(
(boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8
)
rgb_mask[:, :, 0] = boolean_mask * rgb[0]
rgb_mask[:, :, 1] = boolean_mask * rgb[1]
rgb_mask[:, :, 2] = boolean_mask * rgb[2]
finseg += rgb_mask
torch.cuda.empty_cache()
return mask, finseg
def infer(
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
):
try:
rng = jax.random.PRNGKey(int(seed))
num_inference_steps = int(num_inference_steps)
image = Image.fromarray(image, mode="RGB")
num_samples = max(jax.device_count(), int(num_samples))
p_rng = jax.random.split(rng, jax.device_count())
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs(
[negative_prompts] * num_samples
)
processed_image = pipe.prepare_image_inputs([image] * num_samples)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=p_rng,
num_inference_steps=num_inference_steps,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
del negative_prompt_ids
del processed_image
del prompt_ids
output = output.reshape((num_samples,) + output.shape[-3:])
final_image = [np.array(x * 255, dtype=np.uint8) for x in output]
print(output.shape)
del output
except Exception as e:
print("Error: " + str(e))
final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
finally:
gc.collect()
return final_image
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
img = None
mask = None
seg = None
out = None
prompt = ""
neg_prompt = ""
bg = False
return img, mask, seg, out, prompt, neg_prompt, bg
input_img.change(
generate_mask,
inputs=[input_img],
outputs=[mask_img],
)
submit.click(
infer,
inputs=[mask_img, prompt_text, negative_prompt_text],
outputs=[output_img],
)
clear.click(
_clear,
inputs=[
input_img,
mask_img,
output_img,
prompt_text,
negative_prompt_text,
],
outputs=[
input_img,
mask_img,
output_img,
prompt_text,
negative_prompt_text,
],
)
if __name__ == "__main__":
demo.queue()
demo.launch()