zhiminy's picture
add
9c68964
raw
history blame
30.7 kB
import dotenv
import evalica
import io
import json
import os
import random
import threading
import aisuite as ai
import gradio as gr
import pandas as pd
from huggingface_hub import upload_file, hf_hub_download, HfFolder, HfApi
from datetime import datetime
from gradio_leaderboard import Leaderboard
# Load environment variables
dotenv.load_dotenv()
# Retrieve the secret from the environment
gcp_credentials = os.environ.get("GCP_CREDENTIALS")
# Write it to a file
credentials_path = (
"/tmp/gcp_credentials.json" # Ensure this path is secure and temporary
)
with open(credentials_path, "w") as f:
f.write(gcp_credentials)
# Set the environment variable for GCP SDKs
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path
# Timeout in seconds for model response
TIMEOUT = 60
# Initialize AISuite Client
client = ai.Client()
# Hint string constant
SHOW_HINT_STRING = True # Set to False to hide the hint string altogether
HINT_STRING = "Once signed in, your votes will be recorded securely."
# Load context length limits
with open("context_window.json", "r") as file:
context_window = json.load(file)
# Get list of available models
available_models = list(context_window.keys())
if len(available_models) < 2:
raise ValueError(
"Insufficient models in context_window.json. At least two are required."
)
# Initialize global variables
models_state = {}
conversation_state = {}
# Define functions here
# Truncate prompt
def truncate_prompt(prompt, model_alias, models):
model_name = models[model_alias]
context_length = context_window.get(model_name, 4096)
while len(json.dumps({"role": "user", "content": prompt})) > context_length:
prompt = prompt[:-10] if len(prompt) > 10 else prompt[:1]
return prompt
def chat_with_models(user_input, model_alias, models, conversation_state, timeout=TIMEOUT):
model_name = models[model_alias]
truncated_input = truncate_prompt(user_input, model_alias, models)
conversation_state.setdefault(model_name, []).append(
{"role": "user", "content": user_input}
)
response_event = threading.Event() # Event to signal response completion
model_response = {"content": None, "error": None}
def request_model_response():
try:
response = client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": truncated_input}],
)
model_response["content"] = response.choices[0].message.content
except Exception as e:
model_response["error"] = f"{model_name} model is not available. Error: {e}"
finally:
response_event.set() # Signal that the response is completed
# Start the model request in a separate thread
response_thread = threading.Thread(target=request_model_response)
response_thread.start()
# Wait for the specified timeout
response_event_occurred = response_event.wait(timeout)
if not response_event_occurred:
# Timeout occurred, raise a TimeoutError to be handled in the Gradio interface
raise TimeoutError(
f"The {model_alias} model did not respond within {timeout} seconds."
)
elif model_response["error"]:
# An error occurred during model response
raise Exception(model_response["error"])
else:
# Successful response
formatted_response = f"```\n{model_response['content']}\n```"
conversation_state[model_name].append(
{"role": "assistant", "content": model_response["content"]}
)
return formatted_response
def save_content_to_hf(content, repo_name):
"""
Save feedback content to Hugging Face repository organized by month and year.
Args:
content (dict): Feedback data to be saved.
month_year (str): Year and month string in the format "YYYY_MM".
repo_name (str): Hugging Face repository name.
"""
# Ensure the user is authenticated with HF
token = HfFolder.get_token()
if token is None:
raise ValueError("Please log in to Hugging Face using `huggingface-cli login`.")
# Serialize the content to JSON and encode it as bytes
json_content = json.dumps(content, indent=4).encode("utf-8")
# Create a binary file-like object
file_like_object = io.BytesIO(json_content)
# Get the current year and month
month_year = datetime.now().strftime("%Y_%m")
day_hour_minute_second = datetime.now().strftime("%d_%H%M%S")
# Define the path in the repository
filename = f"{month_year}/{day_hour_minute_second}.json"
# Upload to Hugging Face repository
upload_file(
path_or_fileobj=file_like_object,
path_in_repo=filename,
repo_id=repo_name,
repo_type="dataset",
use_auth_token=token,
)
def load_content_from_hf(repo_name="SE-Arena/votes"):
"""
Read feedback content from a Hugging Face repository based on the current month and year.
Args:
repo_name (str): Hugging Face repository name.
Returns:
list: Aggregated feedback data read from the repository.
"""
# Get the current year and month
year_month = datetime.now().strftime("%Y_%m")
feedback_data = []
try:
api = HfApi()
# List all files in the repository
repo_files = api.list_repo_files(repo_id="SE-Arena/votes", repo_type="dataset")
# Filter files by current year and month
feedback_files = [file for file in repo_files if year_month in file]
if not feedback_files:
raise FileNotFoundError(
f"No feedback files found for {year_month} in {repo_name}."
)
# Download and aggregate data
for file in feedback_files:
local_path = hf_hub_download(
repo_id=repo_name, filename=file, repo_type="dataset"
)
with open(local_path, "r") as f:
data = json.load(f)
if isinstance(data, list):
feedback_data.extend(data)
elif isinstance(data, dict):
feedback_data.append(data)
return feedback_data
except:
raise Exception("Error loading feedback data from Hugging Face repository.")
def get_leaderboard_data():
# Load feedback data from the Hugging Face repository
try:
feedback_data = load_content_from_hf()
feedback_df = pd.DataFrame(feedback_data)
except:
# If no feedback exists, return an empty DataFrame
return pd.DataFrame(
columns=[
"Rank",
"Model",
"Elo Score",
"Average Win Rate",
"Bradley-Terry Coefficient",
"Eigenvector Centrality Value",
"PageRank Score",
"Newman Modularity Score",
]
)
feedback_df["winner"] = feedback_df["winner"].map(
{
"left": evalica.Winner.X,
"right": evalica.Winner.Y,
"tie": evalica.Winner.Draw,
}
)
# Calculate scores using various metrics
avr_result = evalica.average_win_rate(
feedback_df["left"], feedback_df["right"], feedback_df["winner"]
)
bt_result = evalica.bradley_terry(
feedback_df["left"], feedback_df["right"], feedback_df["winner"]
)
newman_result = evalica.newman(
feedback_df["left"], feedback_df["right"], feedback_df["winner"]
)
eigen_result = evalica.eigen(
feedback_df["left"], feedback_df["right"], feedback_df["winner"]
)
elo_result = evalica.elo(
feedback_df["left"], feedback_df["right"], feedback_df["winner"]
)
pagerank_result = evalica.pagerank(
feedback_df["left"], feedback_df["right"], feedback_df["winner"]
)
# Combine all results into a single DataFrame
ranking_df = pd.DataFrame(
{
"Model": elo_result.scores.index,
"Elo Score": elo_result.scores.values,
"Average Win Rate": avr_result.scores.values * 100,
"Bradley-Terry Coefficient": bt_result.scores.values,
"Eigenvector Centrality Value": eigen_result.scores.values,
"PageRank Score": pagerank_result.scores.values,
"Newman Modularity Score": newman_result.scores.values,
}
)
# Add a Rank column based on Elo scores
ranking_df["Rank"] = (
ranking_df["Elo Score"].rank(ascending=False, method="min").astype(int)
)
# Round all numeric columns to two decimal places
ranking_df = ranking_df.round(
{
"Elo Score": 2,
"Average Win Rate": 2,
"Bradley-Terry Coefficient": 2,
"Eigenvector Centrality Value": 2,
"PageRank Score": 2,
"Newman Modularity Score": 2,
}
)
# Reorder columns to make 'Rank' the first column
ranking_df = ranking_df.sort_values(by="Rank").reset_index(drop=True)
ranking_df = ranking_df[
[
"Rank",
"Model",
"Elo Score",
"Average Win Rate",
"Bradley-Terry Coefficient",
"Eigenvector Centrality Value",
"PageRank Score",
"Newman Modularity Score",
]
]
return ranking_df
# Function to enable or disable submit buttons based on textbox content
def toggle_submit_button(text):
if not text or text.strip() == "":
return gr.update(interactive=False)
else:
return gr.update(interactive=True)
# Gradio Interface
with gr.Blocks() as app:
user_authenticated = gr.State(False)
models_state = gr.State({})
conversation_state = gr.State({})
with gr.Tab("🏆Leaderboard"):
# Add title and description as a Markdown component
leaderboard_intro = gr.Markdown(
"""
# 🏆 Software Engineering Arena Leaderboard: Community-Driven Evaluation of Top SE Chatbots
The Software Engineering (SE) Arena is an open-source platform designed to evaluate language models through human preference, fostering transparency and collaboration. Developed by researchers at [Software Analysis and Intelligence Lab (SAIL)](https://sail.cs.queensu.ca), the platform empowers the community to assess and compare the performance of leading foundation models in SE tasks. For technical details, check out our [paper](https://arxiv.org/abs/your-paper-link).
""",
elem_classes="leaderboard-intro",
)
# Initialize the leaderboard with the DataFrame containing the expected columns
leaderboard_component = Leaderboard(
value=get_leaderboard_data(),
select_columns=[
"Rank",
"Model",
"Elo Score",
"Average Win Rate",
],
search_columns=["Model"],
filter_columns=[
"Elo Score",
"Average Win Rate",
"Bradley-Terry Coefficient",
"Eigenvector Centrality Value",
"PageRank Score",
"Newman Modularity Score",
],
)
with gr.Tab("⚔️Arena"):
# Add title and description as a Markdown component
arena_intro = gr.Markdown(
"""
# ⚔️ Software Engineering (SE) Arena: Explore and Test the Best SE Chatbots with Long-Context Interactions
## 📜How It Works
- **Blind Comparison**: Submit any software engineering-related query to two anonymous chatbots, including top models like ChatGPT, Gemini, Claude, Llama, and others.
- **Interactive Voting**: Engage in multi-turn dialogues and compare responses. Continue the conversation until you're confident in choosing the better model.
- **Fair Play Rules**: Votes are valid only when chatbot identities remain anonymous—revealed identities disqualify the session.
**Note:** Due to budget constraints, responses that take longer than one minute to generate will be discarded.
""",
elem_classes="arena-intro",
)
# Add Hugging Face Sign In button and message
with gr.Row():
# Define the markdown text with or without the hint string
markdown_text = "## Please sign in using the button on the right to vote!"
if SHOW_HINT_STRING:
markdown_text += f"\n{HINT_STRING}"
hint_markdown = gr.Markdown(markdown_text, elem_classes="markdown-text")
login_button = gr.Button(
"Sign in with Hugging Face", elem_id="oauth-button"
)
# Components with initial non-interactive state
shared_input = gr.Textbox(
label="Enter your prompt for both models",
lines=2,
interactive=False, # Initially non-interactive
)
send_first = gr.Button(
"Submit", visible=True, interactive=False
) # Initially non-interactive
# Add event listener to shared_input to toggle send_first button
shared_input.change(
fn=toggle_submit_button, inputs=shared_input, outputs=send_first
)
user_prompt_md = gr.Markdown(value="", visible=False)
with gr.Column():
shared_input
user_prompt_md
with gr.Row():
response_a_title = gr.Markdown(value="", visible=False)
response_b_title = gr.Markdown(value="", visible=False)
with gr.Row():
response_a = gr.Markdown(label="Response from Model A")
response_b = gr.Markdown(label="Response from Model B")
# Add a popup component for timeout notification
with gr.Row(visible=False) as timeout_popup:
timeout_message = gr.Markdown(
"### Timeout\n\nOne of the models did not respond within 1 minute. Please try again."
)
close_popup_btn = gr.Button("Okay")
def close_timeout_popup():
# Re-enable or disable the submit buttons based on the current textbox content
shared_input_state = gr.update(interactive=True)
send_first_state = toggle_submit_button(shared_input.value)
model_a_input_state = gr.update(interactive=True)
model_a_send_state = toggle_submit_button(model_a_input.value)
model_b_input_state = gr.update(interactive=True)
model_b_send_state = toggle_submit_button(model_b_input.value)
return (
gr.update(visible=False), # Hide the timeout popup
shared_input_state, # Update shared_input
send_first_state, # Update send_first button
model_a_input_state, # Update model_a_input
model_a_send_state, # Update model_a_send button
model_b_input_state, # Update model_b_input
model_b_send_state, # Update model_b_send button
)
# Multi-round inputs, initially hidden
with gr.Row(visible=False) as multi_round_inputs:
model_a_input = gr.Textbox(label="Model A Input", lines=1)
model_a_send = gr.Button(
"Send to Model A", interactive=False
) # Initially disabled
model_b_input = gr.Textbox(label="Model B Input", lines=1)
model_b_send = gr.Button(
"Send to Model B", interactive=False
) # Initially disabled
# Add event listeners to model_a_input and model_b_input to toggle their submit buttons
model_a_input.change(
fn=toggle_submit_button, inputs=model_a_input, outputs=model_a_send
)
model_b_input.change(
fn=toggle_submit_button, inputs=model_b_input, outputs=model_b_send
)
close_popup_btn.click(
close_timeout_popup,
inputs=[],
outputs=[
timeout_popup,
shared_input,
send_first,
model_a_input,
model_a_send,
model_b_input,
model_b_send,
],
)
# Function to update model titles and responses
def update_model_titles_and_responses(
user_input, models_state, conversation_state
):
# Dynamically select two random models
if len(available_models) < 2:
raise ValueError(
"Insufficient models in context_window.json. At least two are required."
)
selected_models = random.sample(available_models, 2)
models = {"Model A": selected_models[0], "Model B": selected_models[1]}
# Update the states
models_state.clear()
models_state.update(models)
conversation_state.clear()
conversation_state.update({name: [] for name in models.values()})
try:
response_a = chat_with_models(
user_input, "Model A", models_state, conversation_state
)
response_b = chat_with_models(
user_input, "Model B", models_state, conversation_state
)
except TimeoutError as e:
# Handle the timeout by resetting components, showing a popup, and disabling inputs
return (
gr.update(
value="", interactive=False, visible=True
), # Disable shared_input
gr.update(value="", visible=False), # Hide user_prompt_md
gr.update(value="", visible=False), # Hide Model A title
gr.update(value="", visible=False), # Hide Model B title
gr.update(value=""), # Clear response from Model A
gr.update(value=""), # Clear response from Model B
gr.update(visible=False), # Hide multi-round inputs
gr.update(visible=False), # Hide vote panel
gr.update(visible=True, interactive=False), # Disable submit button
gr.update(interactive=False), # Disable feedback selection
models_state,
conversation_state,
gr.update(visible=True), # Show the timeout popup
)
except Exception as e:
raise gr.Error(str(e))
# Determine the initial state of the multi-round send buttons
model_a_send_state = toggle_submit_button("")
model_b_send_state = toggle_submit_button("")
return (
gr.update(visible=False), # Hide shared_input
gr.update(
value=f"**Your Prompt:**\n\n{user_input}", visible=True
), # Show user_prompt_md
gr.update(value=f"### Model A:", visible=True),
gr.update(value=f"### Model B:", visible=True),
gr.update(value=response_a), # Show Model A response
gr.update(value=response_b), # Show Model B response
gr.update(visible=True), # Show multi-round inputs
gr.update(visible=True), # Show vote panel
gr.update(visible=False), # Hide submit button
gr.update(interactive=True), # Enable feedback selection
models_state,
conversation_state,
gr.update(visible=False), # Hide the timeout popup if it was visible
model_a_send_state, # Set model_a_send button state
model_b_send_state, # Set model_b_send button state
)
# Feedback panel, initially hidden
with gr.Row(visible=False) as vote_panel:
feedback = gr.Radio(
choices=["Model A", "Model B", "Can't Decide"],
label="Which model do you prefer?",
value="Can't Decide",
interactive=False, # Initially not interactive
)
submit_feedback_btn = gr.Button("Submit Feedback", interactive=False)
# Function to handle login
def handle_login():
"""
Handle user login using Hugging Face OAuth with automatic redirection.
"""
try:
# Use Hugging Face OAuth to initiate login
HfApi()
# Wait for user authentication and get the token
print(
"Redirected to Hugging Face for authentication. Please complete the login."
)
token = HfFolder.get_token()
if not token:
raise Exception("Authentication token not found.")
# If token is successfully retrieved, update the interface state
return (
gr.update(visible=False), # Hide the login button
gr.update(interactive=True), # Enable shared_input
gr.update(interactive=True), # Enable send_first button
gr.update(interactive=True), # Enable feedback radio buttons
gr.update(interactive=True), # Enable submit_feedback_btn
gr.update(visible=False), # Hide the hint string
)
except Exception as e:
# Handle login failure
print(f"Login failed: {e}")
return (
gr.update(visible=True), # Keep the login button visible
gr.update(interactive=False), # Keep shared_input disabled
gr.update(interactive=False), # Keep send_first disabled
gr.update(
interactive=False
), # Keep feedback radio buttons disabled
gr.update(interactive=False), # Keep submit_feedback_btn disabled
gr.update(visible=True), # Show the hint string
)
# Handle the login button click
login_button.click(
handle_login,
inputs=[],
outputs=[
login_button, # Hide the login button after successful login
shared_input, # Enable shared_input
send_first, # Enable send_first button
feedback, # Enable feedback radio buttons
submit_feedback_btn, # Enable submit_feedback_btn
hint_markdown, # Hide the hint string
],
)
# First round handling
send_first.click(
update_model_titles_and_responses,
inputs=[shared_input, models_state, conversation_state],
outputs=[
shared_input, # shared_input
user_prompt_md, # user_prompt_md
response_a_title, # response_a_title
response_b_title, # response_b_title
response_a, # response_a
response_b, # response_b
multi_round_inputs, # multi_round_inputs
vote_panel, # vote_panel
send_first, # send_first
feedback, # feedback
models_state, # models_state
conversation_state, # conversation_state
timeout_popup, # timeout_popup
model_a_send, # model_a_send state
model_b_send, # model_b_send state
],
)
# Handle subsequent rounds
def handle_model_a_send(user_input, models_state, conversation_state):
try:
response = chat_with_models(
user_input, "Model A", models_state, conversation_state
)
# Clear the input box and disable the send button
return (
response,
conversation_state,
gr.update(visible=False),
gr.update(
value="", interactive=True
), # Clear and enable model_a_input
gr.update(interactive=False), # Disable model_a_send button
)
except TimeoutError as e:
# Disable inputs when timeout occurs
return (
gr.update(value=""), # Clear response
conversation_state,
gr.update(visible=True), # Show the timeout popup
gr.update(interactive=False), # Disable model_a_input
gr.update(interactive=False), # Disable model_a_send
)
except Exception as e:
raise gr.Error(str(e))
def handle_model_b_send(user_input, models_state, conversation_state):
try:
response = chat_with_models(
user_input, "Model B", models_state, conversation_state
)
# Clear the input box and disable the send button
return (
response,
conversation_state,
gr.update(visible=False),
gr.update(
value="", interactive=True
), # Clear and enable model_b_input
gr.update(interactive=False), # Disable model_b_send button
)
except TimeoutError as e:
# Disable inputs when timeout occurs
return (
gr.update(value=""), # Clear response
conversation_state,
gr.update(visible=True), # Show the timeout popup
gr.update(interactive=False), # Disable model_b_input
gr.update(interactive=False), # Disable model_b_send
)
except Exception as e:
raise gr.Error(str(e))
model_a_send.click(
handle_model_a_send,
inputs=[model_a_input, models_state, conversation_state],
outputs=[
response_a,
conversation_state,
timeout_popup,
model_a_input,
model_a_send,
],
)
model_b_send.click(
handle_model_b_send,
inputs=[model_b_input, models_state, conversation_state],
outputs=[
response_b,
conversation_state,
timeout_popup,
model_b_input,
model_b_send,
],
)
def submit_feedback(vote, models_state, conversation_state):
# Get current timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Map vote to actual model names
match vote:
case "Model A":
winner_model = "left"
case "Model B":
winner_model = "right"
case "Can't Decide":
winner_model = "tie"
# Create feedback entry
feedback_entry = {
"left": models_state["Model A"],
"right": models_state["Model B"],
"winner": winner_model,
"timestamp": timestamp,
}
# Save feedback back to the Hugging Face dataset
save_content_to_hf(feedback_entry, "SE-Arena/votes")
# Save conversations back to the Hugging Face dataset
save_content_to_hf(conversation_state, "SE-Arena/conversations")
# Clear state
models_state.clear()
conversation_state.clear()
# Recalculate leaderboard
leaderboard_data = get_leaderboard_data()
# Adjust output count to match the interface definition
return (
gr.update(
value="", interactive=True, visible=True
), # Clear and show shared_input
gr.update(value="", visible=False), # Hide user_prompt_md
gr.update(value="", visible=False), # Hide response_a_title
gr.update(value="", visible=False), # Hide response_b_title
gr.update(value=""), # Clear Model A response
gr.update(value=""), # Clear Model B response
gr.update(visible=False), # Hide multi-round inputs
gr.update(visible=False), # Hide vote panel
gr.update(
value="Submit", interactive=True, visible=True
), # Update send_first button
gr.update(
value="Can't Decide", interactive=True
), # Reset feedback selection
leaderboard_data, # Updated leaderboard data
)
# Update the click event for the submit feedback button
submit_feedback_btn.click(
submit_feedback,
inputs=[feedback, models_state, conversation_state],
outputs=[
shared_input, # Reset shared_input
user_prompt_md, # Hide user_prompt_md
response_a_title, # Hide Model A title
response_b_title, # Hide Model B title
response_a, # Clear Model A response
response_b, # Clear Model B response
multi_round_inputs, # Hide multi-round input section
vote_panel, # Hide vote panel
send_first, # Reset and update send_first button
feedback, # Reset feedback selection
leaderboard_component, # Update leaderboard data dynamically
],
)
# Add Terms of Service at the bottom
terms_of_service = gr.Markdown(
"""
## Terms of Service
Users are required to agree to the following terms before using the service:
- The service is a **research preview**. It only provides limited safety measures and may generate offensive content.
- It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
- Please **do not upload any private information**.
- The service collects user dialogue data, including both text and images, and reserves the right to distribute it under a **Creative Commons Attribution (CC-BY)** or a similar license.
"""
)
app.launch()