Spaces:
Sleeping
Sleeping
File size: 10,623 Bytes
40c6d5b 63e748f 40c6d5b 63e748f c997355 40c6d5b ba20988 40c6d5b 76eeea1 40c6d5b a98be6c 63e748f a98be6c 63e748f f7c3a58 a98be6c f7c3a58 f6fb469 f7c3a58 a98be6c f6fb469 63e748f f7c3a58 a98be6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import evaluate
import datasets
import motmetrics as mm
import numpy as np
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}
}
"""
_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
algorithms by computing various metrics based on predicted and ground truth bounding
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
aiding in the iterative improvement of tracking algorithms."""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
max_iou (`float`, *optional*):
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
Default is 0.5.
Returns:
summary: pandas.DataFrame with the following columns:
- idf1 (IDF1 Score): The F1 score for the identity assignment, computed as 2 * (IDP * IDR) / (IDP + IDR).
- idp (ID Precision): Identity Precision, representing the ratio of correctly assigned identities to the total number of predicted identities.
- idr (ID Recall): Identity Recall, representing the ratio of correctly assigned identities to the total number of ground truth identities.
- recall: Recall, computed as the ratio of the number of correctly tracked objects to the total number of ground truth objects.
- precision: Precision, computed as the ratio of the number of correctly tracked objects to the total number of predicted objects.
- num_unique_objects: Total number of unique objects in the ground truth.
- mostly_tracked: Number of objects that are mostly tracked throughout the sequence.
- partially_tracked: Number of objects that are partially tracked but not mostly tracked.
- mostly_lost: Number of objects that are mostly lost throughout the sequence.
- num_false_positives: Number of false positive detections (predicted objects not present in the ground truth).
- num_misses: Number of missed detections (ground truth objects not detected in the predictions).
- num_switches: Number of identity switches.
- num_fragmentations: Number of fragmented objects (objects that are broken into multiple tracks).
- mota (MOTA - Multiple Object Tracking Accuracy): Overall tracking accuracy, computed as 1 - ((num_false_positives + num_misses + num_switches) / num_unique_objects).
- motp (MOTP - Multiple Object Tracking Precision): Average precision of the object localization, computed as the mean of the localization errors of correctly detected objects.
- num_transfer: Number of track transfers.
- num_ascend: Number of ascended track IDs.
- num_migrate: Number of track ID migrations.
Examples:
>>> import numpy as np
>>> module = evaluate.load("bascobasculino/mot-metrics")
>>> predicted =[
[1,1,10,20,30,40,0.85],
[1,2,50,60,70,80,0.92],
[1,3,80,90,100,110,0.75],
[2,1,15,25,35,45,0.78],
[2,2,55,65,75,85,0.95],
[3,1,20,30,40,50,0.88],
[3,2,60,70,80,90,0.82],
[4,1,25,35,45,55,0.91],
[4,2,65,75,85,95,0.89]
]
>>> ground_truth = [
[1, 1, 10, 20, 30, 40],
[1, 2, 50, 60, 70, 80],
[1, 3, 85, 95, 105, 115],
[2, 1, 15, 25, 35, 45],
[2, 2, 55, 65, 75, 85],
[3, 1, 20, 30, 40, 50],
[3, 2, 60, 70, 80, 90],
[4, 1, 25, 35, 45, 55],
[5, 1, 30, 40, 50, 60],
[5, 2, 70, 80, 90, 100]
]
>>> predicted = [np.array(a) for a in predicted]
>>> ground_truth = [np.array(a) for a in ground_truth]
>>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
>>> print(results)
{'idf1': 0.8421052631578947, 'idp': 0.8888888888888888, 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
'num_unique_objects': 3,'mostly_tracked': 2, 'partially_tracked': 1, 'mostly_lost': 0, 'num_false_positives': 1,
'num_misses': 2, 'num_switches': 0, 'num_fragmentations': 0, 'mota': 0.7, 'motp': 0.02981870229007634,
'num_transfer': 0, 'num_ascend': 0, 'num_migrate': 0}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MotMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
)
}),
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, payload, max_iou: float = 0.5, debug: bool = False):
"""Returns the scores"""
# TODO: Compute the different scores of the module
return calculate_from_payload(payload, max_iou, debug)
#return calculate(predictions, references, max_iou)
def calculate(predictions, references, max_iou: float = 0.5):
"""Returns the scores"""
try:
np_predictions = np.array(predictions)
except:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
try:
np_references = np.array(references)
except:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions.shape[1] != 7:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
if np_references.shape[1] != 6:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions[:, 0].min() <= 0:
raise ValueError("The frame number in the predictions should be a positive integer")
if np_references[:, 0].min() <= 0:
raise ValueError("The frame number in the references should be a positive integer")
num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))
acc = mm.MOTAccumulator(auto_id=True)
for i in range(1, num_frames+1):
preds = np_predictions[np_predictions[:, 0] == i, 1:6]
refs = np_references[np_references[:, 0] == i, 1:6]
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
mh = mm.metrics.create()
summary = mh.compute(acc).to_dict()
for key in summary:
summary[key] = summary[key][0]
return summary
def calculate_from_payload(payload: dict, max_iou: float = 0.5, debug: bool = False):
gt_field_name = payload['gt_field_name']
models = payload['models']
sequence_list = payload['sequence_list']
if debug:
print("gt_field_name: ", gt_field_name)
print("models: ", models)
print("sequence_list: ", sequence_list)
output = {}
for sequence in sequence_list:
output[sequence] = {}
frames = payload['sequences'][sequence][gt_field_name]
formatted_references = []
for frame_id, frame in enumerate(frames):
for detection in frame:
id = detection['index']
x, y, w, h = detection['bounding_box']
formatted_references.append([frame_id+1, id, x, y, w, h])
for model in models:
frames = payload['sequences'][sequence][model]
formated_predictions = []
for frame_id, frame in enumerate(frames):
for detection in frame:
id = detection['index']
x, y, w, h = detection['bounding_box']
confidence = detection['confidence']
confidence = 1 #TODO: remove this line
formated_predictions.append([frame_id+1, id, x, y, w, h, confidence])
if debug:
print("formated_predictions: ", formated_predictions)
print("formatted_references: ", formatted_references)
output[sequence][model] = calculate(formated_predictions, formatted_references, max_iou=max_iou)
return output
|