Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +37 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the sentiment analysis pipeline
|
5 |
+
@st.cache_resource
|
6 |
+
def load_pipeline():
|
7 |
+
return pipeline("sentiment-analysis", framework="pt")
|
8 |
+
|
9 |
+
sentiment_analyzer = load_pipeline()
|
10 |
+
|
11 |
+
# Streamlit app title
|
12 |
+
st.title("Sentiment Analysis App")
|
13 |
+
st.subheader("Analyze the sentiment of your text statements")
|
14 |
+
|
15 |
+
# Text input from the user
|
16 |
+
text = st.text_area("Enter a statement for sentiment analysis", height=150)
|
17 |
+
|
18 |
+
|
19 |
+
# Analyze sentiment when the button is clicked
|
20 |
+
if st.button("Analyze Sentiment"):
|
21 |
+
if text.strip():
|
22 |
+
result = sentiment_analyzer(text)[0]
|
23 |
+
sentiment = result['label']
|
24 |
+
confidence = result['score']
|
25 |
+
|
26 |
+
# Display the results
|
27 |
+
st.write("### Results:")
|
28 |
+
st.write(f"**Sentiment**: {sentiment}")
|
29 |
+
st.write(f"**Confidence**: {confidence:.2f}")
|
30 |
+
else:
|
31 |
+
st.warning("Please enter a valid statement.")
|
32 |
+
|
33 |
+
|
34 |
+
# Footer
|
35 |
+
st.markdown("---")
|
36 |
+
st.markdown("Powered by [Hugging Face](https://huggingface.co/) | Developed with ❤️ by [Shaik](https://www.linkedin.com/in/shaik-hidaythulla/)")
|
37 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
tensorflow
|