import streamlit as st from transformers import pipeline # Load the sentiment analysis pipeline @st.cache_resource def load_pipeline(): return pipeline("sentiment-analysis", framework="pt") sentiment_analyzer = load_pipeline() # Streamlit app title st.title("Sentiment Analysis App") st.subheader("Analyze the sentiment of your text statements") # Text input from the user text = st.text_area("Enter a statement for sentiment analysis", height=150) # Analyze sentiment when the button is clicked if st.button("Analyze Sentiment"): if text.strip(): result = sentiment_analyzer(text)[0] sentiment = result['label'] confidence = result['score'] # Display the results st.write("### Results:") st.write(f"**Sentiment**: {sentiment}") st.write(f"**Confidence**: {confidence:.2f}") else: st.warning("Please enter a valid statement.") # Footer st.markdown("---") st.markdown("Powered by [Hugging Face](https://huggingface.co/) | Developed with ❤️ by [Shaik](https://www.linkedin.com/in/shaik-hidaythulla/)")