Spaces:
SHOOL45
/
Runtime error

ImgGen / app.py
Rooni's picture
Update app.py
753b0e0
raw
history blame
6.89 kB
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
from langdetect import detect
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "Disney", "CleanLinearMix", "OrangeMixs"]
# PLEASE ❤ like ❤ this space. Please like me. I am 12 years old, one of my projects is: https://ai-hub.rf.gd . I live in Russia, I don't know English very well. Therefore, I apologize that there is only Russian here, but I think it will not be difficult to translate all this. (For example, using gpt)
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1):
if prompt == "" or prompt == None:
return None
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free
headers = {"Authorization": f"Bearer {API_TOKEN}"}
language = detect(prompt)
key = random.randint(0, 999)
print(f'\033[1mГенерация {key}:\033[0m {prompt}')
if language == 'ru':
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')
if model == 'DALL-E 3 XL':
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
if model == 'Playground 2':
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
if model == 'Openjourney 4':
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4"
if model == 'AbsoluteReality 1.8.1':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
if model == 'Lyriel 1.6':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16"
if model == 'Animagine XL 2.0':
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
if model == 'Counterfeit 2.5':
API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5"
if model == 'Realistic Vision 5.1':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51"
if model == 'Incursios 1.6':
API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6"
if model == 'Anime Detailer XL':
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora"
if model == 'epiCRealism':
API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism"
if model == 'PixelArt XL':
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
if model == 'NewReality XL':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw"
if model == 'Anything 5.0':
API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited"
if model == 'Vector Art XL':
API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora"
if model == 'Disney':
API_URL = "https://api-inference.huggingface.co/models/goofyai/disney_style_xl"
if model == 'CleanLinearMix':
API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw"
if model == 'OrangeMixs':
API_URL = "https://api-inference.huggingface.co/models/WarriorMama777/OrangeMixs"
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000)
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}")
print(f"Содержимое ответа: {response.text}")
return None
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Ошибка при попытке открыть изображение: {e}")
return None
css = """
* {}
footer {visibility: hidden !important;}
"""
with gr.Blocks(css=css) as dalle:
with gr.Tab("Базовые настройки"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input")
with gr.Row():
model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list)
with gr.Tab("Расширенные настройки"):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
with gr.Row():
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
with gr.Row():
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
with gr.Row():
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Row():
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery")
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed], outputs=image_output)
dalle.launch(show_api=False, share=False)