import gradio as gr import tensorflow as tf from tensorflow.keras.utils import CustomObjectScope from tensorflow.keras.layers.experimental.preprocessing import RandomHeight with CustomObjectScope({'RandomHeight': RandomHeight}): model_0 = tf.keras.models.load_model('/content/drive/MyDrive/bestmodel_porno_final_meilleure100%2.0.h5') def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) prediction = model_0.predict(inp) output = "" if prediction[0][prediction.argmax()] < 0.84: output = "bonne image" elif prediction.argmax() == 0: output = "Rifle violence" elif prediction.argmax() == 1: output = "guns violence" elif prediction.argmax() == 2: output = "knife violence" elif prediction.argmax() == 3: output = "image porno" elif prediction.argmax() == 4: output = "personne habillée" else: output = "tank violence" return output image = gr.Image(height=224, width=224) gr.Interface( fn=classify_image, inputs=image, outputs="text",live=True, theme="dark-peach",title="API de détection des images violentes", ).launch()