File size: 16,199 Bytes
0f079b2 e814557 0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
from dataclasses import dataclass, field
import numpy as np
import json
import copy
import torch
import torch.nn.functional as F
from skimage import measure
from einops import repeat
from tqdm import tqdm
from PIL import Image
from diffusers import (
DDPMScheduler,
DDIMScheduler,
UniPCMultistepScheduler,
KarrasVeScheduler,
DPMSolverMultistepScheduler
)
import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.ops import generate_dense_grid_points
from craftsman.utils.misc import get_rank
from craftsman.utils.typing import *
def compute_snr(noise_scheduler, timesteps):
"""
Computes SNR as per
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def ddim_sample(ddim_scheduler: DDIMScheduler,
diffusion_model: torch.nn.Module,
shape: Union[List[int], Tuple[int]],
cond: torch.FloatTensor,
steps: int,
eta: float = 0.0,
guidance_scale: float = 3.0,
do_classifier_free_guidance: bool = True,
generator: Optional[torch.Generator] = None,
device: torch.device = "cuda:0",
disable_prog: bool = True):
assert steps > 0, f"{steps} must > 0."
# init latents
bsz = cond.shape[0]
if do_classifier_free_guidance:
bsz = bsz // 2
latents = torch.randn(
(bsz, *shape),
generator=generator,
device=cond.device,
dtype=cond.dtype,
)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * ddim_scheduler.init_noise_sigma
# set timesteps
ddim_scheduler.set_timesteps(steps)
timesteps = ddim_scheduler.timesteps.to(device)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (Ξ·) is only used with the DDIMScheduler, and between [0, 1]
extra_step_kwargs = {
# "eta": eta,
"generator": generator
}
# reverse
for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)):
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2)
if do_classifier_free_guidance
else latents
)
# predict the noise residual
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = ddim_scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
yield latents, t
@craftsman.register("shape-diffusion-system")
class ShapeDiffusionSystem(BaseSystem):
@dataclass
class Config(BaseSystem.Config):
val_samples_json: str = None
z_scale_factor: float = 1.0
guidance_scale: float = 7.5
num_inference_steps: int = 50
eta: float = 0.0
snr_gamma: float = 5.0
# shape vae model
shape_model_type: str = None
shape_model: dict = field(default_factory=dict)
# condition model
condition_model_type: str = None
condition_model: dict = field(default_factory=dict)
# diffusion model
denoiser_model_type: str = None
denoiser_model: dict = field(default_factory=dict)
# noise scheduler
noise_scheduler_type: str = None
noise_scheduler: dict = field(default_factory=dict)
# denoise scheduler
denoise_scheduler_type: str = None
denoise_scheduler: dict = field(default_factory=dict)
cfg: Config
def configure(self):
super().configure()
self.shape_model = craftsman.find(self.cfg.shape_model_type)(self.cfg.shape_model)
self.shape_model.eval()
self.shape_model.requires_grad_(False)
self.condition = craftsman.find(self.cfg.condition_model_type)(self.cfg.condition_model)
self.denoiser_model = craftsman.find(self.cfg.denoiser_model_type)(self.cfg.denoiser_model)
self.noise_scheduler = craftsman.find(self.cfg.noise_scheduler_type)(**self.cfg.noise_scheduler)
self.denoise_scheduler = craftsman.find(self.cfg.denoise_scheduler_type)(**self.cfg.denoise_scheduler)
self.z_scale_factor = self.cfg.z_scale_factor
def forward(self, batch: Dict[str, Any]):
# encode shape latents
shape_embeds, kl_embed, posterior = self.shape_model.encode(
batch["surface"][..., :3 + self.cfg.shape_model.point_feats],
sample_posterior=True
)
latents = kl_embed * self.z_scale_factor
cond_latents = self.condition(batch)
cond_latents = cond_latents.to(latents).view(latents.shape[0], -1, cond_latents.shape[-1])
# Sample noise that we"ll add to the latents
# [batch_size, n_token, latent_dim]
noise = torch.randn_like(latents).to(latents)
bs = latents.shape[0]
# Sample a random timestep for each motion
timesteps = torch.randint(
0,
self.noise_scheduler.config.num_train_timesteps,
(bs,),
device=latents.device,
)
# import pdb; pdb.set_trace()
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# x_t
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
# diffusion model forward
noise_pred = self.denoiser_model(noisy_z, timesteps, cond_latents)
# compute loss
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
if self.cfg.snr_gamma == 0:
if self.cfg.loss.loss_type == "l1":
loss = F.l1_loss(noise_pred, target, reduction="mean")
elif self.cfg.loss.loss_type in ["mse", "l2"]:
loss = F.mse_loss(noise_pred, target, reduction="mean")
else:
raise NotImplementedError(f"Loss Type: {self.cfg.loss.loss_type} not yet supported.")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(self.noise_scheduler, timesteps)
mse_loss_weights = torch.stack([snr, self.cfg.snr_gamma * torch.ones_like(timesteps)], dim=1).min(
dim=1
)[0]
if self.noise_scheduler.config.prediction_type == "epsilon":
mse_loss_weights = mse_loss_weights / snr
elif noise_scheduler.config.prediction_type == "v_prediction":
mse_loss_weights = mse_loss_weights / (snr + 1)
if self.cfg.loss.loss_type == "l1":
loss = F.l1_loss(noise_pred, target, reduction="none")
elif self.cfg.loss.loss_type in ["mse", "l2"]:
loss = F.mse_loss(noise_pred, target, reduction="none")
else:
raise NotImplementedError(f"Loss Type: {self.cfg.loss.loss_type} not yet supported.")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return {
"loss_diffusion": loss,
"latents": latents,
"x_0": noisy_z,
"noise": noise,
"noise_pred": noise_pred,
"timesteps": timesteps,
}
def training_step(self, batch, batch_idx):
out = self(batch)
loss = 0.
for name, value in out.items():
if name.startswith("loss_"):
self.log(f"train/{name}", value)
loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")])
for name, value in self.cfg.loss.items():
if name.startswith("lambda_"):
self.log(f"train_params/{name}", self.C(value))
return {"loss": loss}
@torch.no_grad()
def validation_step(self, batch, batch_idx):
self.eval()
if get_rank() == 0:
sample_inputs = json.loads(open(self.cfg.val_samples_json).read()) # condition
sample_inputs_ = copy.deepcopy(sample_inputs)
sample_outputs = self.sample(sample_inputs) # list
for i, sample_output in enumerate(sample_outputs):
mesh_v_f, has_surface = self.shape_model.extract_geometry(sample_output, octree_depth=7)
for j in range(len(mesh_v_f)):
if "text" in sample_inputs_ and "image" in sample_inputs_:
name = sample_inputs_["image"][j].split("/")[-1].replace(".png", "")
elif "text" in sample_inputs_ and "mvimage" in sample_inputs_:
name = sample_inputs_["mvimages"][j][0].split("/")[-2].replace(".png", "")
elif "text" in sample_inputs_:
name = sample_inputs_["text"][j].replace(" ", "_")
elif "image" in sample_inputs_:
name = sample_inputs_["image"][j].split("/")[-1].replace(".png", "")
elif "mvimages" in sample_inputs_:
name = sample_inputs_["mvimages"][j][0].split("/")[-2].replace(".png", "")
self.save_mesh(
f"it{self.true_global_step}/{name}_{i}.obj",
mesh_v_f[j][0], mesh_v_f[j][1]
)
out = self(batch)
if self.global_step == 0:
latents = self.shape_model.decode(out["latents"])
mesh_v_f, has_surface = self.shape_model.extract_geometry(latents)
self.save_mesh(
f"it{self.true_global_step}/{batch['uid'][0]}_{batch['sel_idx'][0] if 'sel_idx' in batch.keys() else 0}.obj",
mesh_v_f[0][0], mesh_v_f[0][1]
)
# exit()
torch.cuda.empty_cache()
return {"val/loss": out["loss_diffusion"]}
@torch.no_grad()
def sample(self,
sample_inputs: Dict[str, Union[torch.FloatTensor, List[str]]],
sample_times: int = 1,
steps: Optional[int] = None,
guidance_scale: Optional[float] = None,
eta: float = 0.0,
return_intermediates: bool = False,
camera_embeds: Optional[torch.Tensor] = None,
seed: Optional[int] = None,
**kwargs):
if steps is None:
steps = self.cfg.num_inference_steps
if guidance_scale is None:
guidance_scale = self.cfg.guidance_scale
do_classifier_free_guidance = guidance_scale > 0
# conditional encode
if "image" in sample_inputs:
sample_inputs["image"] = [Image.open(img) for img in sample_inputs["image"]]
cond = self.condition.encode_image(sample_inputs["image"])
if do_classifier_free_guidance:
un_cond = self.condition.empty_image_embeds.repeat(len(sample_inputs["image"]), 1, 1).to(cond)
cond = torch.cat([un_cond, cond], dim=0)
elif "mvimages" in sample_inputs: # by default 4 views
bs = len(sample_inputs["mvimages"])
cond = []
for image in sample_inputs["mvimages"]:
if isinstance(image, list) and isinstance(image[0], str):
sample_inputs["image"] = [Image.open(img) for img in image] # List[PIL]
else:
sample_inputs["image"] = image
cond += [self.condition.encode_image(sample_inputs["image"])]
cond = torch.stack(cond, dim=0)# tensor shape δΈΊ[len(sample_inputs["mvimages"], 4*(num_latents+1), context_dim]
if do_classifier_free_guidance:
un_cond = self.condition.empty_image_embeds.unsqueeze(0).repeat(len(sample_inputs["mvimages"]), cond.shape[1] // self.condition.cfg.n_views, 1, 1).to(cond) # shape δΈΊ[len(sample_inputs["mvimages"], 4*(num_latents+1), context_dim]
cond = torch.cat([un_cond, cond], dim=0).view(bs * 2, -1, cond[0].shape[-1])
else:
raise NotImplementedError("Only text, image or mvimages condition is supported.")
outputs = []
latents = None
if seed != None:
generator = torch.Generator(device="cuda").manual_seed(seed)
else:
generator = None
if not return_intermediates:
for _ in range(sample_times):
sample_loop = ddim_sample(
self.denoise_scheduler,
self.denoiser_model.eval(),
shape=self.shape_model.latent_shape,
cond=cond,
steps=steps,
guidance_scale=guidance_scale,
do_classifier_free_guidance=do_classifier_free_guidance,
device=self.device,
eta=eta,
disable_prog=False,
generator= generator
)
for sample, t in sample_loop:
latents = sample
outputs.append(self.shape_model.decode(latents / self.z_scale_factor, **kwargs))
else:
sample_loop = ddim_sample(
self.denoise_scheduler,
self.denoiser_model.eval(),
shape=self.shape_model.latent_shape,
cond=cond,
steps=steps,
guidance_scale=guidance_scale,
do_classifier_free_guidance=do_classifier_free_guidance,
device=self.device,
eta=eta,
disable_prog=False,
generator= generator
)
iter_size = steps // sample_times
i = 0
for sample, t in sample_loop:
latents = sample
if i % iter_size == 0 or i == steps - 1:
outputs.append(self.shape_model.decode(latents / self.z_scale_factor, **kwargs))
i += 1
return outputs
def on_validation_epoch_end(self):
pass
|