|
|
|
import argparse
|
|
import numpy as np
|
|
import gradio as gr
|
|
from omegaconf import OmegaConf
|
|
import torch
|
|
from PIL import Image
|
|
import PIL
|
|
from pipelines import TwoStagePipeline
|
|
from huggingface_hub import hf_hub_download
|
|
import os
|
|
import rembg
|
|
from typing import Any
|
|
import json
|
|
import os
|
|
import json
|
|
import argparse
|
|
|
|
from model import CRM
|
|
from inference import generate3d
|
|
|
|
pipeline = None
|
|
rembg_session = rembg.new_session()
|
|
|
|
|
|
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
|
|
|
|
width, height = image.size
|
|
if width == height:
|
|
return image
|
|
new_size = (max(width, height), max(width, height))
|
|
new_image = Image.new("RGBA", new_size, bg_color)
|
|
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
|
new_image.paste(image, paste_position)
|
|
return new_image
|
|
|
|
def check_input_image(input_image):
|
|
if input_image is None:
|
|
raise gr.Error("No image uploaded!")
|
|
|
|
|
|
def remove_background(
|
|
image: PIL.Image.Image,
|
|
rembg_session = None,
|
|
force: bool = False,
|
|
**rembg_kwargs,
|
|
) -> PIL.Image.Image:
|
|
do_remove = True
|
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
|
|
|
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
|
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
|
image = Image.alpha_composite(background, image)
|
|
do_remove = False
|
|
do_remove = do_remove or force
|
|
if do_remove:
|
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
|
return image
|
|
|
|
def do_resize_content(original_image: Image, scale_rate):
|
|
|
|
if scale_rate != 1:
|
|
|
|
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
|
|
|
resized_image = original_image.resize(new_size)
|
|
|
|
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
|
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
|
padded_image.paste(resized_image, paste_position)
|
|
return padded_image
|
|
else:
|
|
return original_image
|
|
|
|
def add_background(image, bg_color=(255, 255, 255)):
|
|
|
|
background = Image.new("RGBA", image.size, bg_color)
|
|
return Image.alpha_composite(background, image)
|
|
|
|
|
|
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
|
|
"""
|
|
input image is a pil image in RGBA, return RGB image
|
|
"""
|
|
print(background_choice)
|
|
if background_choice == "Alpha as mask":
|
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
|
image = Image.alpha_composite(background, image)
|
|
else:
|
|
image = remove_background(image, rembg_session, force_remove=True)
|
|
image = do_resize_content(image, foreground_ratio)
|
|
image = expand_to_square(image)
|
|
image = add_background(image, backgroud_color)
|
|
return image.convert("RGB")
|
|
|
|
|
|
def gen_image(input_image, seed, scale, step):
|
|
global pipeline, model, args
|
|
pipeline.set_seed(seed)
|
|
rt_dict = pipeline(input_image, scale=scale, step=step)
|
|
stage1_images = rt_dict["stage1_images"]
|
|
stage2_images = rt_dict["stage2_images"]
|
|
np_imgs = np.concatenate(stage1_images, 1)
|
|
np_xyzs = np.concatenate(stage2_images, 1)
|
|
|
|
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device)
|
|
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--stage1_config",
|
|
type=str,
|
|
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
|
|
help="config for stage1",
|
|
)
|
|
parser.add_argument(
|
|
"--stage2_config",
|
|
type=str,
|
|
default="configs/stage2-v2-snr.yaml",
|
|
help="config for stage2",
|
|
)
|
|
|
|
parser.add_argument("--device", type=str, default="cuda")
|
|
args = parser.parse_args()
|
|
|
|
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
|
|
specs = json.load(open("configs/specs_objaverse_total.json"))
|
|
model = CRM(specs).to(args.device)
|
|
model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
|
|
|
|
stage1_config = OmegaConf.load(args.stage1_config).config
|
|
stage2_config = OmegaConf.load(args.stage2_config).config
|
|
stage2_sampler_config = stage2_config.sampler
|
|
stage1_sampler_config = stage1_config.sampler
|
|
|
|
stage1_model_config = stage1_config.models
|
|
stage2_model_config = stage2_config.models
|
|
|
|
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
|
|
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
|
|
stage1_model_config.resume = pixel_path
|
|
stage2_model_config.resume = xyz_path
|
|
|
|
pipeline = TwoStagePipeline(
|
|
stage1_model_config,
|
|
stage2_model_config,
|
|
stage1_sampler_config,
|
|
stage2_sampler_config,
|
|
device=args.device,
|
|
dtype=torch.float16
|
|
)
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
image_input = gr.Image(
|
|
label="Image input",
|
|
image_mode="RGBA",
|
|
sources="upload",
|
|
type="pil",
|
|
)
|
|
processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
background_choice = gr.Radio([
|
|
"Alpha as mask",
|
|
"Auto Remove background"
|
|
], value="Auto Remove background",
|
|
label="backgroud choice")
|
|
|
|
|
|
back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
|
|
foreground_ratio = gr.Slider(
|
|
label="Foreground Ratio",
|
|
minimum=0.5,
|
|
maximum=1.0,
|
|
value=1.0,
|
|
step=0.05,
|
|
)
|
|
|
|
with gr.Column():
|
|
seed = gr.Number(value=1234, label="seed", precision=0)
|
|
guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
|
|
step = gr.Number(value=50, minimum=30, maximum=100, label="sample steps", precision=0)
|
|
text_button = gr.Button("Generate 3D shape")
|
|
gr.Examples(
|
|
examples=[os.path.join("examples", i) for i in os.listdir("examples")],
|
|
inputs=[image_input],
|
|
)
|
|
with gr.Column():
|
|
image_output = gr.Image(interactive=False, label="Output RGB image")
|
|
xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
|
|
|
|
output_model = gr.Model3D(
|
|
label="Output GLB",
|
|
interactive=False,
|
|
)
|
|
gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.")
|
|
output_obj = gr.File(interactive=False, label="Output OBJ")
|
|
|
|
inputs = [
|
|
processed_image,
|
|
seed,
|
|
guidance_scale,
|
|
step,
|
|
]
|
|
outputs = [
|
|
image_output,
|
|
xyz_ouput,
|
|
output_model,
|
|
output_obj,
|
|
]
|
|
|
|
|
|
text_button.click(fn=check_input_image, inputs=[image_input]).success(
|
|
fn=preprocess_image,
|
|
inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
|
|
outputs=[processed_image],
|
|
).success(
|
|
fn=gen_image,
|
|
inputs=inputs,
|
|
outputs=outputs,
|
|
)
|
|
demo.queue().launch()
|
|
|