|
import numpy as np
|
|
import torch
|
|
import time
|
|
import nvdiffrast.torch as dr
|
|
from util.utils import get_tri
|
|
import tempfile
|
|
from mesh import Mesh
|
|
import zipfile
|
|
def generate3d(model, rgb, ccm, device):
|
|
|
|
color_tri = torch.from_numpy(rgb)/255
|
|
xyz_tri = torch.from_numpy(ccm[:,:,(2,1,0)])/255
|
|
color = color_tri.permute(2,0,1)
|
|
xyz = xyz_tri.permute(2,0,1)
|
|
|
|
|
|
def get_imgs(color):
|
|
|
|
color_list = []
|
|
color_list.append(color[:,:,256*5:256*(1+5)])
|
|
for i in range(0,5):
|
|
color_list.append(color[:,:,256*i:256*(1+i)])
|
|
return torch.stack(color_list, dim=0)
|
|
|
|
triplane_color = get_imgs(color).permute(0,2,3,1).unsqueeze(0).to(device)
|
|
|
|
color = get_imgs(color)
|
|
xyz = get_imgs(xyz)
|
|
|
|
color = get_tri(color, dim=0, blender= True, scale = 1).unsqueeze(0)
|
|
xyz = get_tri(xyz, dim=0, blender= True, scale = 1, fix= True).unsqueeze(0)
|
|
|
|
triplane = torch.cat([color,xyz],dim=1).to(device)
|
|
|
|
model.eval()
|
|
glctx = dr.RasterizeCudaContext()
|
|
|
|
if model.denoising == True:
|
|
tnew = 20
|
|
tnew = torch.randint(tnew, tnew+1, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
|
|
noise_new = torch.randn_like(triplane) *0.5+0.5
|
|
triplane = model.scheduler.add_noise(triplane, noise_new, tnew)
|
|
start_time = time.time()
|
|
with torch.no_grad():
|
|
triplane_feature2 = model.unet2(triplane,tnew)
|
|
end_time = time.time()
|
|
elapsed_time = end_time - start_time
|
|
print(f"unet takes {elapsed_time}s")
|
|
else:
|
|
triplane_feature2 = model.unet2(triplane)
|
|
|
|
|
|
with torch.no_grad():
|
|
data_config = {
|
|
'resolution': [1024, 1024],
|
|
"triview_color": triplane_color.to(device),
|
|
}
|
|
|
|
verts, faces = model.decode(data_config, triplane_feature2)
|
|
|
|
data_config['verts'] = verts[0]
|
|
data_config['faces'] = faces
|
|
|
|
|
|
from kiui.mesh_utils import clean_mesh
|
|
verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=False, remesh_size=0.005)
|
|
data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
|
|
data_config['faces'] = torch.from_numpy(faces).cuda().contiguous()
|
|
|
|
start_time = time.time()
|
|
with torch.no_grad():
|
|
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
|
model.export_mesh_wt_uv(glctx, data_config, mesh_path_obj, "", device, res=(1024,1024), tri_fea_2=triplane_feature2)
|
|
|
|
mesh = Mesh.load(mesh_path_obj+".obj", bound=0.9, front_dir="+z")
|
|
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
|
mesh.write(mesh_path_glb+".glb")
|
|
|
|
|
|
|
|
|
|
|
|
with zipfile.ZipFile(mesh_path_obj+'.zip', 'w') as myzip:
|
|
myzip.write(mesh_path_obj+'.obj', mesh_path_obj.split("/")[-1]+'.obj')
|
|
myzip.write(mesh_path_obj+'.png', mesh_path_obj.split("/")[-1]+'.png')
|
|
myzip.write(mesh_path_obj+'.mtl', mesh_path_obj.split("/")[-1]+'.mtl')
|
|
|
|
end_time = time.time()
|
|
elapsed_time = end_time - start_time
|
|
print(f"uv takes {elapsed_time}s")
|
|
return mesh_path_glb+".glb", mesh_path_obj+'.zip'
|
|
|