|
from typing import Dict, Optional, Tuple, List |
|
from dataclasses import dataclass |
|
import os |
|
import sys |
|
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(os.path.join(proj_dir)) |
|
import time |
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import PIL |
|
from PIL import Image |
|
import rembg |
|
from rembg import remove |
|
rembg_session = rembg.new_session() |
|
from segment_anything import sam_model_registry, SamPredictor |
|
|
|
import craftsman |
|
from craftsman.systems.base import BaseSystem |
|
from craftsman.utils.config import ExperimentConfig, load_config |
|
|
|
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
def load_model( |
|
ckpt_path: str, |
|
config_path: str, |
|
scheluder_name: str = None, |
|
scheluder_dict : dict = None, |
|
device = "cuda" |
|
): |
|
cfg: ExperimentConfig |
|
cfg = load_config(config_path) |
|
|
|
if 'pretrained_model_name_or_path' not in cfg.system.condition_model or cfg.system.condition_model.pretrained_model_name_or_path is None: |
|
cfg.system.condition_model.config_path = config_path.replace("config.yaml", "clip_config.json") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
system: BaseSystem = craftsman.find(cfg.system_type)( |
|
cfg.system, |
|
) |
|
|
|
print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}") |
|
system.load_state_dict(torch.load(ckpt_path, map_location=torch.device('cpu'))['state_dict']) |
|
system = system.to(device).eval() |
|
|
|
return system |
|
|
|
def rmbg_sam(iamge, foreground_ratio): |
|
return iamge |
|
|
|
def rmbg_rembg(iamge, foreground_ratio): |
|
return iamge |
|
|
|
class RMBG(object): |
|
def __init__(self, device): |
|
sam_checkpoint = f"{parent_dir}/ckpts/SAM/sam_vit_h_4b8939.pth" |
|
model_type = "vit_h" |
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device) |
|
self.predictor = SamPredictor(sam) |
|
|
|
def rmbg_sam(self, input_image, crop_size, foreground_ratio, segment=True, rescale=True): |
|
RES = 1024 |
|
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) |
|
|
|
if segment: |
|
image_rem = input_image.convert('RGBA') |
|
image_nobg = remove(image_rem, alpha_matting=True) |
|
arr = np.asarray(image_nobg)[:, :, -1] |
|
x_nonzero = np.nonzero(arr.sum(axis=0)) |
|
y_nonzero = np.nonzero(arr.sum(axis=1)) |
|
x_min = int(x_nonzero[0].min()) |
|
y_min = int(y_nonzero[0].min()) |
|
x_max = int(x_nonzero[0].max()) |
|
y_max = int(y_nonzero[0].max()) |
|
input_image = sam_segment(self.predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) |
|
|
|
if rescale: |
|
image_arr = np.array(input_image) |
|
in_w, in_h = image_arr.shape[:2] |
|
out_res = min(RES, max(in_w, in_h)) |
|
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) |
|
x, y, w, h = cv2.boundingRect(mask) |
|
max_size = max(w, h) |
|
side_len = int(max_size / foreground_ratio) |
|
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) |
|
center = side_len // 2 |
|
padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w] |
|
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) |
|
|
|
rgba_arr = np.array(rgba) / 255.0 |
|
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) |
|
input_image = Image.fromarray((rgb * 255).astype(np.uint8)) |
|
else: |
|
input_image = expand2square(input_image, (127, 127, 127, 0)) |
|
return input_image |
|
|
|
|
|
def rmbg_rembg(self, image, crop_size, foreground_ratio, background_choice, backgroud_color): |
|
print(background_choice) |
|
if background_choice == "Alpha as mask": |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
else: |
|
image = remove_background(image, rembg_session, force_remove=True) |
|
image = do_resize_content(image, foreground_ratio) |
|
image = expand_to_square(image) |
|
image = add_background(image, backgroud_color) |
|
return image.convert("RGB") |
|
|
|
def run(self, rm_type, image, crop_size, foreground_ratio, background_choice, backgroud_color): |
|
if "Remove" in background_choice: |
|
if rm_type.upper() == "SAM": |
|
return self.rmbg_sam(image, crop_size, foreground_ratio, background_choice, backgroud_color) |
|
elif rm_type.upper() == "REMBG": |
|
return self.rmbg_rembg(image, crop_size, foreground_ratio, background_choice, backgroud_color) |
|
else: |
|
return -1 |
|
elif "Original" in background_choice: |
|
return image |
|
else: |
|
return -1 |
|
|
|
|
|
def save_image(tensor): |
|
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() |
|
|
|
im = Image.fromarray(ndarr) |
|
return ndarr |
|
|
|
def prepare_data(single_image, crop_size): |
|
from apps.third_party.Wonder3D.mvdiffusion.data.single_image_dataset import SingleImageDataset |
|
dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[256, 256], bg_color='white', crop_size=crop_size, single_image=single_image) |
|
return dataset[0] |
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
|
|
def sam_segment(predictor, input_image, *bbox_coords): |
|
bbox = np.array(bbox_coords) |
|
image = np.asarray(input_image) |
|
|
|
start_time = time.time() |
|
predictor.set_image(image) |
|
|
|
masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True) |
|
|
|
print(f"SAM Time: {time.time() - start_time:.3f}s") |
|
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) |
|
out_image[:, :, :3] = image |
|
out_image_bbox = out_image.copy() |
|
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 |
|
torch.cuda.empty_cache() |
|
return Image.fromarray(out_image_bbox, mode='RGBA') |
|
|
|
def expand_to_square(image, bg_color=(0, 0, 0, 0)): |
|
|
|
width, height = image.size |
|
if width == height: |
|
return image |
|
new_size = (max(width, height), max(width, height)) |
|
new_image = Image.new("RGBA", new_size, bg_color) |
|
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) |
|
new_image.paste(image, paste_position) |
|
return new_image |
|
|
|
def check_input_image(input_image): |
|
if input_image is None: |
|
raise gr.Error("No image uploaded!") |
|
|
|
def remove_background( |
|
image: PIL.Image.Image, |
|
rembg_session = None, |
|
force: bool = False, |
|
**rembg_kwargs, |
|
) -> PIL.Image.Image: |
|
do_remove = True |
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: |
|
|
|
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
do_remove = False |
|
do_remove = do_remove or force |
|
if do_remove: |
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) |
|
return image |
|
|
|
def do_resize_content(original_image: Image, scale_rate): |
|
|
|
if scale_rate != 1: |
|
|
|
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) |
|
|
|
resized_image = original_image.resize(new_size) |
|
|
|
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) |
|
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) |
|
padded_image.paste(resized_image, paste_position) |
|
return padded_image |
|
else: |
|
return original_image |
|
|
|
def add_background(image, bg_color=(255, 255, 255)): |
|
|
|
background = Image.new("RGBA", image.size, bg_color) |
|
return Image.alpha_composite(background, image) |