|
import gc |
|
import os |
|
import re |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from packaging import version |
|
|
|
from craftsman.utils.config import config_to_primitive |
|
from craftsman.utils.typing import * |
|
|
|
|
|
|
|
def parse_version(ver: str): |
|
return version.parse(ver) |
|
|
|
|
|
def get_rank(): |
|
|
|
|
|
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK") |
|
for key in rank_keys: |
|
rank = os.environ.get(key) |
|
if rank is not None: |
|
return int(rank) |
|
return 0 |
|
|
|
def get_world_size(): |
|
world_size_keys = ("WORLD_SIZE", "SLURM_NTASKS", "JSM_NAMESPACE_SIZE") |
|
for key in world_size_keys: |
|
world_size = os.environ.get(key) |
|
if world_size is not None: |
|
return int(world_size) |
|
return 1 |
|
|
|
def get_device(): |
|
return torch.device(f"cuda:{get_rank()}") |
|
|
|
|
|
def load_module_weights( |
|
path, module_name=None, ignore_modules=None, map_location=None |
|
) -> Tuple[dict, int, int]: |
|
if module_name is not None and ignore_modules is not None: |
|
raise ValueError("module_name and ignore_modules cannot be both set") |
|
if map_location is None: |
|
map_location = get_device() |
|
|
|
ckpt = torch.load(path, map_location=map_location) |
|
state_dict = ckpt["state_dict"] |
|
state_dict_to_load = state_dict |
|
|
|
if ignore_modules is not None: |
|
state_dict_to_load = {} |
|
for k, v in state_dict.items(): |
|
ignore = any( |
|
[k.startswith(ignore_module + ".") for ignore_module in ignore_modules] |
|
) |
|
if ignore: |
|
continue |
|
state_dict_to_load[k] = v |
|
|
|
if module_name is not None: |
|
state_dict_to_load = {} |
|
for k, v in state_dict.items(): |
|
m = re.match(rf"^{module_name}\.(.*)$", k) |
|
if m is None: |
|
continue |
|
state_dict_to_load[m.group(1)] = v |
|
|
|
return state_dict_to_load, ckpt["epoch"], ckpt["global_step"] |
|
|
|
|
|
def C(value: Any, epoch: int, global_step: int) -> float: |
|
if isinstance(value, int) or isinstance(value, float): |
|
pass |
|
else: |
|
value = config_to_primitive(value) |
|
if not isinstance(value, list): |
|
raise TypeError("Scalar specification only supports list, got", type(value)) |
|
if len(value) == 3: |
|
value = [0] + value |
|
assert len(value) == 4 |
|
start_step, start_value, end_value, end_step = value |
|
if isinstance(end_step, int): |
|
current_step = global_step |
|
value = start_value + (end_value - start_value) * max( |
|
min(1.0, (current_step - start_step) / (end_step - start_step)), 0.0 |
|
) |
|
elif isinstance(end_step, float): |
|
current_step = epoch |
|
value = start_value + (end_value - start_value) * max( |
|
min(1.0, (current_step - start_step) / (end_step - start_step)), 0.0 |
|
) |
|
return value |
|
|
|
|
|
def cleanup(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
tcnn.free_temporary_memory() |
|
|
|
|
|
def finish_with_cleanup(func: Callable): |
|
def wrapper(*args, **kwargs): |
|
out = func(*args, **kwargs) |
|
cleanup() |
|
return out |
|
|
|
return wrapper |
|
|
|
|
|
def _distributed_available(): |
|
return torch.distributed.is_available() and torch.distributed.is_initialized() |
|
|
|
|
|
def barrier(): |
|
if not _distributed_available(): |
|
return |
|
else: |
|
torch.distributed.barrier() |
|
|
|
|
|
def broadcast(tensor, src=0): |
|
if not _distributed_available(): |
|
return tensor |
|
else: |
|
torch.distributed.broadcast(tensor, src=src) |
|
return tensor |
|
|
|
|
|
def enable_gradient(model, enabled: bool = True) -> None: |
|
for param in model.parameters(): |
|
param.requires_grad_(enabled) |
|
|
|
|
|
def all_gather_batch(tensors): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
""" |
|
|
|
world_size = get_world_size() |
|
|
|
if world_size == 1: |
|
if isinstance(tensors, list): |
|
return tensors |
|
return tensors |
|
if not isinstance(tensors, list): |
|
is_list = False |
|
tensors = [tensors] |
|
else: |
|
is_list = True |
|
output_tensor = [] |
|
tensor_list = [] |
|
for tensor in tensors: |
|
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] |
|
dist.all_gather( |
|
tensor_all, |
|
tensor, |
|
async_op=False |
|
) |
|
|
|
tensor_list.append(tensor_all) |
|
|
|
for tensor_all in tensor_list: |
|
output_tensor.append(torch.cat(tensor_all, dim=0)) |
|
if not is_list: |
|
return output_tensor[0] |
|
return output_tensor |