general { | |
base_exp_dir = ./exp/neus/CASE_NAME/ | |
recording = [ | |
./, | |
./models | |
] | |
} | |
dataset { | |
data_dir = ./outputs/ | |
object_name = CASE_NAME | |
object_viewidx = 1 | |
imSize = [256, 256] | |
load_color = True | |
stage = coarse | |
mtype = mlp | |
normal_system: front | |
num_views = 6 | |
} | |
train { | |
learning_rate = 5e-4 | |
learning_rate_alpha = 0.05 | |
end_iter = 1000 # longer time, better result. 1w will be ok for most cases | |
batch_size = 512 | |
validate_resolution_level = 1 | |
warm_up_end = 500 | |
anneal_end = 0 | |
use_white_bkgd = True | |
save_freq = 5000 | |
val_freq = 5000 | |
val_mesh_freq =5000 | |
report_freq = 100 | |
color_weight = 1.0 | |
igr_weight = 0.1 | |
mask_weight = 1.0 | |
normal_weight = 1.0 | |
sparse_weight = 0.1 | |
} | |
model { | |
nerf { | |
D = 8, | |
d_in = 4, | |
d_in_view = 3, | |
W = 256, | |
multires = 10, | |
multires_view = 4, | |
output_ch = 4, | |
skips=[4], | |
use_viewdirs=True | |
} | |
sdf_network { | |
d_out = 257 | |
d_in = 3 | |
d_hidden = 256 | |
n_layers = 8 | |
skip_in = [4] | |
multires = 6 | |
bias = 0.5 | |
scale = 1.0 | |
geometric_init = True | |
weight_norm = True | |
} | |
variance_network { | |
init_val = 0.3 | |
} | |
rendering_network { | |
d_feature = 256 | |
mode = no_view_dir | |
d_in = 6 | |
d_out = 3 | |
d_hidden = 256 | |
n_layers = 4 | |
weight_norm = True | |
multires_view = 0 | |
squeeze_out = True | |
} | |
neus_renderer { | |
n_samples = 64 | |
n_importance = 64 | |
n_outside = 0 | |
up_sample_steps = 4 # 1 for simple coarse-to-fine sampling | |
perturb = 1.0 | |
sdf_decay_param = 100 | |
} | |
} | |