wyysf's picture
i
0f079b2
raw
history blame
1.77 kB
general {
base_exp_dir = ./exp/neus/CASE_NAME/
recording = [
./,
./models
]
}
dataset {
data_dir = ./outputs/
object_name = CASE_NAME
object_viewidx = 1
imSize = [256, 256]
load_color = True
stage = coarse
mtype = mlp
normal_system: front
num_views = 6
}
train {
learning_rate = 5e-4
learning_rate_alpha = 0.05
end_iter = 1000 # longer time, better result. 1w will be ok for most cases
batch_size = 512
validate_resolution_level = 1
warm_up_end = 500
anneal_end = 0
use_white_bkgd = True
save_freq = 5000
val_freq = 5000
val_mesh_freq =5000
report_freq = 100
color_weight = 1.0
igr_weight = 0.1
mask_weight = 1.0
normal_weight = 1.0
sparse_weight = 0.1
}
model {
nerf {
D = 8,
d_in = 4,
d_in_view = 3,
W = 256,
multires = 10,
multires_view = 4,
output_ch = 4,
skips=[4],
use_viewdirs=True
}
sdf_network {
d_out = 257
d_in = 3
d_hidden = 256
n_layers = 8
skip_in = [4]
multires = 6
bias = 0.5
scale = 1.0
geometric_init = True
weight_norm = True
}
variance_network {
init_val = 0.3
}
rendering_network {
d_feature = 256
mode = no_view_dir
d_in = 6
d_out = 3
d_hidden = 256
n_layers = 4
weight_norm = True
multires_view = 0
squeeze_out = True
}
neus_renderer {
n_samples = 64
n_importance = 64
n_outside = 0
up_sample_steps = 4 # 1 for simple coarse-to-fine sampling
perturb = 1.0
sdf_decay_param = 100
}
}