|
import spaces
|
|
import argparse
|
|
import os
|
|
import json
|
|
import torch
|
|
import sys
|
|
import time
|
|
import importlib
|
|
import numpy as np
|
|
from omegaconf import OmegaConf
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from collections import OrderedDict
|
|
import trimesh
|
|
from einops import repeat, rearrange
|
|
import pytorch_lightning as pl
|
|
from typing import Dict, Optional, Tuple, List
|
|
import gradio as gr
|
|
from typing import Any
|
|
|
|
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
sys.path.append(os.path.join(proj_dir))
|
|
|
|
import tempfile
|
|
import craftsman
|
|
from craftsman.systems.base import BaseSystem
|
|
from craftsman.utils.config import ExperimentConfig, load_config
|
|
|
|
from apps.utils import *
|
|
from apps.mv_models import GenMVImage
|
|
|
|
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
|
_DESCRIPTION = '''
|
|
<div>
|
|
Select or upload a image, then just click 'Generate'.
|
|
<br>
|
|
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
|
|
then a multi-view normal enhanced image generation model is used to refine the mesh.
|
|
We provide the coarse 3D diffusion part here.
|
|
<br>
|
|
If you found CraftsMan is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
|
|
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
|
|
<br>
|
|
*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh.
|
|
<br>
|
|
*If you have your own multi-view images, you can directly upload it.
|
|
</div>
|
|
'''
|
|
_CITE_ = r"""
|
|
---
|
|
π **Citation**
|
|
If you find our work useful for your research or applications, please cite using this bibtex:
|
|
```bibtex
|
|
@article{craftsman,
|
|
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
|
|
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
|
|
journal = {arxiv:xxx},
|
|
year = {2024},
|
|
}
|
|
```
|
|
π€ **Acknowledgements**
|
|
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
|
|
π **License**
|
|
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
|
|
π§ **Contact**
|
|
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
|
"""
|
|
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
|
|
|
model = None
|
|
cached_dir = None
|
|
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
|
stage1_sampler_config = stage1_config.sampler
|
|
stage1_model_config = stage1_config.models
|
|
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
|
|
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
|
crm_pipeline = None
|
|
|
|
@spaces.GPU
|
|
def gen_mvimg(
|
|
mvimg_model, text, image, crop_size, seed, guidance_scale, step
|
|
):
|
|
global crm_pipeline
|
|
if seed == 0:
|
|
seed = np.random.randint(1, 65535)
|
|
crm_pipeline.set_seed(seed)
|
|
rt_dict = crm_pipeline(image, scale=guidance_scale, step=step)
|
|
mv_imgs = rt_dict["stage1_images"]
|
|
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
|
|
|
@spaces.GPU
|
|
def image2mesh(view_front: np.ndarray,
|
|
view_right: np.ndarray,
|
|
view_back: np.ndarray,
|
|
view_left: np.ndarray,
|
|
more: bool = False,
|
|
scheluder_name: str ="DDIMScheduler",
|
|
guidance_scale: int = 7.5,
|
|
seed: int = 4,
|
|
octree_depth: int = 7):
|
|
|
|
sample_inputs = {
|
|
"mvimages": [[
|
|
Image.fromarray(view_front),
|
|
Image.fromarray(view_right),
|
|
Image.fromarray(view_back),
|
|
Image.fromarray(view_left)
|
|
]]
|
|
}
|
|
|
|
global model
|
|
latents = model.sample(
|
|
sample_inputs,
|
|
sample_times=1,
|
|
guidance_scale=guidance_scale,
|
|
return_intermediates=False,
|
|
seed=seed
|
|
|
|
)[0]
|
|
|
|
|
|
box_v = 1.1
|
|
mesh_outputs, _ = model.shape_model.extract_geometry(
|
|
latents,
|
|
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
|
octree_depth=octree_depth
|
|
)
|
|
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
|
|
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
|
|
|
|
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
|
mesh.export(filepath, include_normals=True)
|
|
|
|
if 'Remesh' in more:
|
|
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
|
|
print("Remeshing with Instant Meshes...")
|
|
|
|
target_face_count = 1000
|
|
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
|
|
os.system(command)
|
|
filepath = remeshed_filepath
|
|
|
|
|
|
return filepath
|
|
|
|
if __name__=="__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
|
|
parser.add_argument("--device", type=int, default=0)
|
|
args = parser.parse_args()
|
|
|
|
cached_dir = args.cached_dir
|
|
os.makedirs(args.cached_dir, exist_ok=True)
|
|
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
|
print(f"using device: {device}")
|
|
|
|
crm_pipeline = TwoStagePipeline(
|
|
stage1_model_config,
|
|
stage1_sampler_config,
|
|
device=device,
|
|
dtype=torch.float16
|
|
)
|
|
|
|
|
|
background_choice = OrderedDict({
|
|
"Alpha as Mask": "Alpha as Mask",
|
|
"Auto Remove Background": "Auto Remove Background",
|
|
"Original Image": "Original Image",
|
|
})
|
|
mvimg_model_config_list = ["CRM"]
|
|
|
|
|
|
|
|
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
|
|
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
|
|
scheluder_dict = OrderedDict({
|
|
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
|
|
|
|
|
|
})
|
|
|
|
|
|
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
|
button_secondary_background_fill="*neutral_100",
|
|
button_secondary_background_fill_hover="*neutral_200")
|
|
custom_css = '''#disp_image {
|
|
text-align: center; /* Horizontally center the content */
|
|
}'''
|
|
|
|
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
gr.Markdown('# ' + _TITLE)
|
|
gr.Markdown(_DESCRIPTION)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
with gr.Row():
|
|
image_input = gr.Image(
|
|
label="Image Input",
|
|
image_mode="RGBA",
|
|
sources="upload",
|
|
type="pil",
|
|
)
|
|
with gr.Row():
|
|
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
|
|
with gr.Row():
|
|
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
|
|
with gr.Row():
|
|
seed = gr.Number(0, label='Seed', show_label=True)
|
|
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
|
|
|
|
|
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
|
|
|
with gr.Row():
|
|
gr.Examples(
|
|
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
|
inputs=[image_input],
|
|
examples_per_page=8
|
|
)
|
|
|
|
with gr.Column(scale=4):
|
|
with gr.Row():
|
|
output_model_obj = gr.Model3D(
|
|
label="Output Model (OBJ Format)",
|
|
camera_position=(90.0, 90.0, 3.5),
|
|
interactive=False,
|
|
)
|
|
|
|
with gr.Row():
|
|
view_front = gr.Image(label="Front", interactive=True, show_label=True)
|
|
view_right = gr.Image(label="Right", interactive=True, show_label=True)
|
|
view_back = gr.Image(label="Back", interactive=True, show_label=True)
|
|
view_left = gr.Image(label="Left", interactive=True, show_label=True)
|
|
|
|
with gr.Accordion('Advanced options', open=False):
|
|
with gr.Row(equal_height=True):
|
|
run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
|
|
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
|
|
|
with gr.Accordion('Advanced options (2D)', open=False):
|
|
with gr.Row():
|
|
crop_size = gr.Number(224, label='Crop size')
|
|
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
|
|
|
|
with gr.Row():
|
|
foreground_ratio = gr.Slider(
|
|
label="Foreground Ratio",
|
|
minimum=0.5,
|
|
maximum=1.0,
|
|
value=1.0,
|
|
step=0.05,
|
|
)
|
|
|
|
with gr.Row():
|
|
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
|
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
|
|
|
backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
|
|
|
|
with gr.Row():
|
|
mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale")
|
|
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
|
|
|
|
with gr.Accordion('Advanced options (3D)', open=False):
|
|
with gr.Row():
|
|
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
|
|
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps")
|
|
|
|
with gr.Row():
|
|
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
|
|
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
|
|
|
|
gr.Markdown(_CITE_)
|
|
|
|
outputs = [output_model_obj]
|
|
rmbg = RMBG(device)
|
|
|
|
|
|
model = load_model(ckpt_path, config_path, device)
|
|
|
|
run_btn.click(fn=check_input_image, inputs=[image_input]
|
|
).success(
|
|
fn=rmbg.run,
|
|
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
|
outputs=[image_input]
|
|
).success(
|
|
fn=gen_mvimg,
|
|
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
|
outputs=[view_front, view_right, view_back, view_left]
|
|
).success(
|
|
fn=image2mesh,
|
|
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
|
outputs=outputs,
|
|
api_name="generate_img2obj")
|
|
run_mv_btn.click(fn=gen_mvimg,
|
|
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
|
outputs=[view_front, view_right, view_back, view_left]
|
|
)
|
|
run_3d_btn.click(fn=image2mesh,
|
|
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
|
outputs=outputs,
|
|
api_name="generate_img2obj")
|
|
|
|
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |