Upload utils.py
Browse files- apps/utils.py +174 -0
apps/utils.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, Tuple, List
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
6 |
+
sys.path.append(os.path.join(proj_dir))
|
7 |
+
import time
|
8 |
+
import cv2
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import PIL
|
13 |
+
from PIL import Image
|
14 |
+
import rembg
|
15 |
+
from rembg import remove
|
16 |
+
rembg_session = rembg.new_session()
|
17 |
+
from segment_anything import sam_model_registry, SamPredictor
|
18 |
+
|
19 |
+
import craftsman
|
20 |
+
from craftsman.systems.base import BaseSystem
|
21 |
+
from craftsman.utils.config import ExperimentConfig, load_config
|
22 |
+
|
23 |
+
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
24 |
+
|
25 |
+
def check_input_image(input_image):
|
26 |
+
if input_image is None:
|
27 |
+
raise gr.Error("No image uploaded!")
|
28 |
+
|
29 |
+
def load_model(
|
30 |
+
ckpt_path: str,
|
31 |
+
config_path: str,
|
32 |
+
device = "cuda"
|
33 |
+
):
|
34 |
+
cfg: ExperimentConfig
|
35 |
+
cfg = load_config(config_path)
|
36 |
+
|
37 |
+
if 'pretrained_model_name_or_path' not in cfg.system.condition_model or cfg.system.condition_model.pretrained_model_name_or_path is None:
|
38 |
+
cfg.system.condition_model.config_path = config_path.replace("config.yaml", "clip_config.json")
|
39 |
+
|
40 |
+
system: BaseSystem = craftsman.find(cfg.system_type)(
|
41 |
+
cfg.system,
|
42 |
+
)
|
43 |
+
|
44 |
+
print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}")
|
45 |
+
system.load_state_dict(torch.load(ckpt_path, map_location=torch.device('cpu'))['state_dict'])
|
46 |
+
system = system.to(device).eval()
|
47 |
+
|
48 |
+
return system
|
49 |
+
|
50 |
+
class RMBG(object):
|
51 |
+
def __init__(self, device):
|
52 |
+
sam = sam_model_registry["vit_h"](checkpoint=f"{parent_dir}/ckpts/SAM/sam_vit_h_4b8939.pth").to(device)
|
53 |
+
self.predictor = SamPredictor(sam)
|
54 |
+
|
55 |
+
def rmbg_sam(self, input_image):
|
56 |
+
def _sam_segment(predictor, input_image, *bbox_coords):
|
57 |
+
bbox = np.array(bbox_coords)
|
58 |
+
image = np.asarray(input_image)
|
59 |
+
|
60 |
+
start_time = time.time()
|
61 |
+
predictor.set_image(image)
|
62 |
+
|
63 |
+
masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True)
|
64 |
+
|
65 |
+
print(f"SAM Time: {time.time() - start_time:.3f}s")
|
66 |
+
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
67 |
+
out_image[:, :, :3] = image
|
68 |
+
out_image_bbox = out_image.copy()
|
69 |
+
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
|
70 |
+
torch.cuda.empty_cache()
|
71 |
+
return Image.fromarray(out_image_bbox, mode='RGBA')
|
72 |
+
|
73 |
+
RES = 1024
|
74 |
+
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
|
75 |
+
|
76 |
+
image_rem = input_image.convert('RGBA')
|
77 |
+
image_nobg = remove(image_rem, alpha_matting=True)
|
78 |
+
arr = np.asarray(image_nobg)[:, :, -1]
|
79 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
80 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
81 |
+
x_min = int(x_nonzero[0].min())
|
82 |
+
y_min = int(y_nonzero[0].min())
|
83 |
+
x_max = int(x_nonzero[0].max())
|
84 |
+
y_max = int(y_nonzero[0].max())
|
85 |
+
return _sam_segment(self.predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
|
86 |
+
|
87 |
+
def rmbg_rembg(self, input_image):
|
88 |
+
def _rembg_remove(
|
89 |
+
image: PIL.Image.Image,
|
90 |
+
rembg_session = None,
|
91 |
+
force: bool = False,
|
92 |
+
**rembg_kwargs,
|
93 |
+
) -> PIL.Image.Image:
|
94 |
+
do_remove = True
|
95 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
96 |
+
# explain why current do not rm bg
|
97 |
+
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
|
98 |
+
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
99 |
+
image = Image.alpha_composite(background, image)
|
100 |
+
do_remove = False
|
101 |
+
do_remove = do_remove or force
|
102 |
+
if do_remove:
|
103 |
+
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
104 |
+
return image
|
105 |
+
return _rembg_remove(input_image, rembg_session, force_remove=True)
|
106 |
+
|
107 |
+
def run(self, rm_type, image, foreground_ratio, background_choice, backgroud_color):
|
108 |
+
# image = cv2.resize(np.array(image), (crop_size, crop_size))
|
109 |
+
# image = Image.fromarray(image)
|
110 |
+
|
111 |
+
if background_choice == "Alpha as mask":
|
112 |
+
background = Image.new("RGBA", image.size, (backgroud_color[0], backgroud_color[1], backgroud_color[2], 0))
|
113 |
+
return Image.alpha_composite(background, image)
|
114 |
+
elif "Remove" in background_choice:
|
115 |
+
if rm_type.upper() == "SAM":
|
116 |
+
image = self.rmbg_sam(image)
|
117 |
+
elif rm_type.upper() == "REMBG":
|
118 |
+
image = self.rmbg_rembg(image)
|
119 |
+
else:
|
120 |
+
return -1
|
121 |
+
|
122 |
+
image = do_resize_content(image, foreground_ratio)
|
123 |
+
image = expand_to_square(image)
|
124 |
+
image = add_background(image, backgroud_color)
|
125 |
+
return image.convert("RGB")
|
126 |
+
|
127 |
+
elif "Original" in background_choice:
|
128 |
+
return image
|
129 |
+
else:
|
130 |
+
return -1
|
131 |
+
|
132 |
+
def do_resize_content(original_image: Image, scale_rate):
|
133 |
+
# resize image content wile retain the original image size
|
134 |
+
if scale_rate != 1:
|
135 |
+
# Calculate the new size after rescaling
|
136 |
+
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
137 |
+
# Resize the image while maintaining the aspect ratio
|
138 |
+
resized_image = original_image.resize(new_size)
|
139 |
+
# Create a new image with the original size and black background
|
140 |
+
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
141 |
+
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
142 |
+
padded_image.paste(resized_image, paste_position)
|
143 |
+
return padded_image
|
144 |
+
else:
|
145 |
+
return original_image
|
146 |
+
|
147 |
+
def expand2square(pil_img, background_color):
|
148 |
+
width, height = pil_img.size
|
149 |
+
if width == height:
|
150 |
+
return pil_img
|
151 |
+
elif width > height:
|
152 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
153 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
154 |
+
return result
|
155 |
+
else:
|
156 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
157 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
158 |
+
return result
|
159 |
+
|
160 |
+
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
|
161 |
+
# expand image to 1:1
|
162 |
+
width, height = image.size
|
163 |
+
if width == height:
|
164 |
+
return image
|
165 |
+
new_size = (max(width, height), max(width, height))
|
166 |
+
new_image = Image.new("RGBA", new_size, bg_color)
|
167 |
+
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
168 |
+
new_image.paste(image, paste_position)
|
169 |
+
return new_image
|
170 |
+
|
171 |
+
def add_background(image, bg_color=(255, 255, 255)):
|
172 |
+
# given an RGBA image, alpha channel is used as mask to add background color
|
173 |
+
background = Image.new("RGBA", image.size, bg_color)
|
174 |
+
return Image.alpha_composite(background, image)
|