Upload gradio_app.py
Browse files- gradio_app.py +77 -47
gradio_app.py
CHANGED
@@ -12,9 +12,6 @@ from huggingface_hub import hf_hub_download
|
|
12 |
|
13 |
from collections import OrderedDict
|
14 |
import trimesh
|
15 |
-
from einops import repeat, rearrange
|
16 |
-
import pytorch_lightning as pl
|
17 |
-
from typing import Dict, Optional, Tuple, List
|
18 |
import gradio as gr
|
19 |
from typing import Any
|
20 |
|
@@ -22,12 +19,8 @@ proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
22 |
sys.path.append(os.path.join(proj_dir))
|
23 |
|
24 |
import tempfile
|
25 |
-
import craftsman
|
26 |
-
from craftsman.systems.base import BaseSystem
|
27 |
-
from craftsman.utils.config import ExperimentConfig, load_config
|
28 |
|
29 |
from apps.utils import *
|
30 |
-
from apps.mv_models import GenMVImage
|
31 |
|
32 |
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
33 |
_DESCRIPTION = '''
|
@@ -64,6 +57,8 @@ CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so
|
|
64 |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
65 |
"""
|
66 |
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
|
|
|
|
67 |
|
68 |
model = None
|
69 |
cached_dir = None
|
@@ -74,17 +69,43 @@ stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pi
|
|
74 |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
75 |
crm_pipeline = None
|
76 |
|
|
|
|
|
|
|
|
|
|
|
77 |
@spaces.GPU
|
78 |
def gen_mvimg(
|
79 |
-
mvimg_model,
|
80 |
):
|
81 |
-
global crm_pipeline
|
82 |
if seed == 0:
|
83 |
seed = np.random.randint(1, 65535)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
@spaces.GPU
|
90 |
def image2mesh(view_front: np.ndarray,
|
@@ -153,22 +174,27 @@ if __name__=="__main__":
|
|
153 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
154 |
print(f"using device: {device}")
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
crm_pipeline = TwoStagePipeline(
|
157 |
stage1_model_config,
|
158 |
stage1_sampler_config,
|
159 |
device=device,
|
160 |
dtype=torch.float16
|
161 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
# for multi-view images generation
|
164 |
-
background_choice = OrderedDict({
|
165 |
-
"Alpha as Mask": "Alpha as Mask",
|
166 |
-
"Auto Remove Background": "Auto Remove Background",
|
167 |
-
"Original Image": "Original Image",
|
168 |
-
})
|
169 |
-
mvimg_model_config_list = ["CRM"]
|
170 |
-
# mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
|
171 |
-
|
172 |
# for 3D latent set diffusion
|
173 |
ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt"
|
174 |
config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml"
|
@@ -196,24 +222,33 @@ if __name__=="__main__":
|
|
196 |
|
197 |
with gr.Row():
|
198 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with gr.Row():
|
200 |
-
|
201 |
-
label="Image Input",
|
202 |
-
image_mode="RGBA",
|
203 |
-
sources="upload",
|
204 |
-
type="pil",
|
205 |
-
)
|
206 |
-
with gr.Row():
|
207 |
-
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
|
208 |
-
with gr.Row():
|
209 |
-
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
|
210 |
with gr.Row():
|
211 |
seed = gr.Number(0, label='Seed', show_label=True)
|
|
|
212 |
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
213 |
-
|
214 |
-
#
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
with gr.Row():
|
218 |
gr.Examples(
|
219 |
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
@@ -243,10 +278,6 @@ if __name__=="__main__":
|
|
243 |
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
244 |
|
245 |
with gr.Accordion('Advanced options (2D)', open=False):
|
246 |
-
with gr.Row():
|
247 |
-
crop_size = gr.Number(224, label='Crop size')
|
248 |
-
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
|
249 |
-
|
250 |
with gr.Row():
|
251 |
foreground_ratio = gr.Slider(
|
252 |
label="Foreground Ratio",
|
@@ -259,11 +290,11 @@ if __name__=="__main__":
|
|
259 |
with gr.Row():
|
260 |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
261 |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
262 |
-
|
263 |
-
backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
|
264 |
|
265 |
with gr.Row():
|
266 |
-
mvimg_guidance_scale = gr.Number(value=
|
267 |
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
|
268 |
|
269 |
with gr.Accordion('Advanced options (3D)', open=False):
|
@@ -280,17 +311,16 @@ if __name__=="__main__":
|
|
280 |
outputs = [output_model_obj]
|
281 |
rmbg = RMBG(device)
|
282 |
|
283 |
-
# gen_mvimg = GenMVImage(device)
|
284 |
model = load_model(ckpt_path, config_path, device)
|
285 |
|
286 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
287 |
).success(
|
288 |
fn=rmbg.run,
|
289 |
-
inputs=[rmbg_type, image_input,
|
290 |
outputs=[image_input]
|
291 |
).success(
|
292 |
fn=gen_mvimg,
|
293 |
-
inputs=[mvimg_model,
|
294 |
outputs=[view_front, view_right, view_back, view_left]
|
295 |
).success(
|
296 |
fn=image2mesh,
|
@@ -298,7 +328,7 @@ if __name__=="__main__":
|
|
298 |
outputs=outputs,
|
299 |
api_name="generate_img2obj")
|
300 |
run_mv_btn.click(fn=gen_mvimg,
|
301 |
-
inputs=[mvimg_model,
|
302 |
outputs=[view_front, view_right, view_back, view_left]
|
303 |
)
|
304 |
run_3d_btn.click(fn=image2mesh,
|
|
|
12 |
|
13 |
from collections import OrderedDict
|
14 |
import trimesh
|
|
|
|
|
|
|
15 |
import gradio as gr
|
16 |
from typing import Any
|
17 |
|
|
|
19 |
sys.path.append(os.path.join(proj_dir))
|
20 |
|
21 |
import tempfile
|
|
|
|
|
|
|
22 |
|
23 |
from apps.utils import *
|
|
|
24 |
|
25 |
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
26 |
_DESCRIPTION = '''
|
|
|
57 |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
58 |
"""
|
59 |
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
60 |
+
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline
|
61 |
+
|
62 |
|
63 |
model = None
|
64 |
cached_dir = None
|
|
|
69 |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
70 |
crm_pipeline = None
|
71 |
|
72 |
+
sys.path.append(f"apps/third_party/LGM")
|
73 |
+
imgaedream_pipeline = None
|
74 |
+
|
75 |
+
generator = None
|
76 |
+
|
77 |
@spaces.GPU
|
78 |
def gen_mvimg(
|
79 |
+
mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation,
|
80 |
):
|
|
|
81 |
if seed == 0:
|
82 |
seed = np.random.randint(1, 65535)
|
83 |
+
|
84 |
+
if mvimg_model == "CRM":
|
85 |
+
global crm_pipeline
|
86 |
+
crm_pipeline.set_seed(seed)
|
87 |
+
mv_imgs = crm_pipeline(
|
88 |
+
image,
|
89 |
+
scale=guidance_scale,
|
90 |
+
step=step
|
91 |
+
)["stage1_images"]
|
92 |
+
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
93 |
+
|
94 |
+
elif mvimg_model == "ImageDream":
|
95 |
+
global imagedream_pipeline, generator
|
96 |
+
image = np.array(image).astype(np.float32) / 255.0
|
97 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
98 |
+
mv_imgs = imagedream_pipeline(
|
99 |
+
text,
|
100 |
+
image,
|
101 |
+
negative_prompt=neg_text,
|
102 |
+
guidance_scale=guidance_scale,
|
103 |
+
num_inference_steps=step,
|
104 |
+
elevation=elevation,
|
105 |
+
generator=generator.manual_seed(seed),
|
106 |
+
)
|
107 |
+
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
|
108 |
+
|
109 |
|
110 |
@spaces.GPU
|
111 |
def image2mesh(view_front: np.ndarray,
|
|
|
174 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
175 |
print(f"using device: {device}")
|
176 |
|
177 |
+
# for multi-view images generation
|
178 |
+
background_choice = OrderedDict({
|
179 |
+
"Alpha as Mask": "Alpha as Mask",
|
180 |
+
"Auto Remove Background": "Auto Remove Background",
|
181 |
+
"Original Image": "Original Image",
|
182 |
+
})
|
183 |
+
mvimg_model_config_list = ["CRM", "ImageDream"]
|
184 |
crm_pipeline = TwoStagePipeline(
|
185 |
stage1_model_config,
|
186 |
stage1_sampler_config,
|
187 |
device=device,
|
188 |
dtype=torch.float16
|
189 |
)
|
190 |
+
imagedream_pipeline = MVDreamPipeline.from_pretrained(
|
191 |
+
"ashawkey/imagedream-ipmv-diffusers", # remote weights
|
192 |
+
torch_dtype=torch.float16,
|
193 |
+
trust_remote_code=True,
|
194 |
+
)
|
195 |
+
generator = torch.Generator(device)
|
196 |
+
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
# for 3D latent set diffusion
|
199 |
ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt"
|
200 |
config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml"
|
|
|
222 |
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=2):
|
225 |
+
with gr.Column():
|
226 |
+
# input image
|
227 |
+
with gr.Row():
|
228 |
+
image_input = gr.Image(
|
229 |
+
label="Image Input",
|
230 |
+
image_mode="RGBA",
|
231 |
+
sources="upload",
|
232 |
+
type="pil",
|
233 |
+
)
|
234 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
235 |
+
|
236 |
with gr.Row():
|
237 |
+
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
with gr.Row():
|
239 |
seed = gr.Number(0, label='Seed', show_label=True)
|
240 |
+
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list))
|
241 |
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
242 |
+
with gr.Row():
|
243 |
+
# input prompt
|
244 |
+
text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream")
|
245 |
+
|
246 |
+
with gr.Accordion('Advanced options', open=False):
|
247 |
+
# negative prompt
|
248 |
+
neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
|
249 |
+
# elevation
|
250 |
+
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
|
251 |
+
|
252 |
with gr.Row():
|
253 |
gr.Examples(
|
254 |
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
|
|
278 |
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
279 |
|
280 |
with gr.Accordion('Advanced options (2D)', open=False):
|
|
|
|
|
|
|
|
|
281 |
with gr.Row():
|
282 |
foreground_ratio = gr.Slider(
|
283 |
label="Foreground Ratio",
|
|
|
290 |
with gr.Row():
|
291 |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
292 |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
293 |
+
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
|
294 |
+
# backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
|
295 |
|
296 |
with gr.Row():
|
297 |
+
mvimg_guidance_scale = gr.Number(value=4.0, minimum=3, maximum=10, label="2D Guidance Scale")
|
298 |
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
|
299 |
|
300 |
with gr.Accordion('Advanced options (3D)', open=False):
|
|
|
311 |
outputs = [output_model_obj]
|
312 |
rmbg = RMBG(device)
|
313 |
|
|
|
314 |
model = load_model(ckpt_path, config_path, device)
|
315 |
|
316 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
317 |
).success(
|
318 |
fn=rmbg.run,
|
319 |
+
inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color],
|
320 |
outputs=[image_input]
|
321 |
).success(
|
322 |
fn=gen_mvimg,
|
323 |
+
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation],
|
324 |
outputs=[view_front, view_right, view_back, view_left]
|
325 |
).success(
|
326 |
fn=image2mesh,
|
|
|
328 |
outputs=outputs,
|
329 |
api_name="generate_img2obj")
|
330 |
run_mv_btn.click(fn=gen_mvimg,
|
331 |
+
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation],
|
332 |
outputs=[view_front, view_right, view_back, view_left]
|
333 |
)
|
334 |
run_3d_btn.click(fn=image2mesh,
|