Upload 107 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- apps/third_party/CRM/LICENSE +21 -0
- apps/third_party/CRM/README.md +85 -0
- apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml +21 -0
- apps/third_party/CRM/configs/specs_objaverse_total.json +57 -0
- apps/third_party/CRM/configs/stage2-v2-snr.yaml +25 -0
- apps/third_party/CRM/imagedream/.DS_Store +0 -0
- apps/third_party/CRM/imagedream/__init__.py +1 -0
- apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/camera_utils.py +99 -0
- apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv.yaml +61 -0
- apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_ch8.yaml +61 -0
- apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_chin8.yaml +61 -0
- apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_chin8_zero_snr.yaml +62 -0
- apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_local.yaml +62 -0
- apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_zero_SNR.yaml +62 -0
- apps/third_party/CRM/imagedream/ldm/__init__.py +0 -0
- apps/third_party/CRM/imagedream/ldm/__pycache__/__init__.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/__pycache__/__init__.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/__pycache__/interface.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/__pycache__/interface.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/__pycache__/util.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/__pycache__/util.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/interface.py +206 -0
- apps/third_party/CRM/imagedream/ldm/models/__init__.py +0 -0
- apps/third_party/CRM/imagedream/ldm/models/__pycache__/__init__.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/__pycache__/__init__.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/autoencoder.py +270 -0
- apps/third_party/CRM/imagedream/ldm/models/diffusion/__init__.py +0 -0
- apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/models/diffusion/ddim.py +430 -0
- apps/third_party/CRM/imagedream/ldm/modules/__init__.py +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/__pycache__/__init__.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/__pycache__/attention.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/__pycache__/ema.cpython-310.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/attention.py +456 -0
- apps/third_party/CRM/imagedream/ldm/modules/diffusionmodules/__init__.py +0 -0
- apps/third_party/CRM/imagedream/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
apps/third_party/CRM/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 TSAIL group
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
apps/third_party/CRM/README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convolutional Reconstruction Model
|
2 |
+
|
3 |
+
Official implementation for *CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model*.
|
4 |
+
|
5 |
+
**CRM is a feed-forward model which can generate 3D textured mesh in 10 seconds.**
|
6 |
+
|
7 |
+
## [Project Page](https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/) | [Arxiv](https://arxiv.org/abs/2403.05034) | [HF-Demo](https://huggingface.co/spaces/Zhengyi/CRM) | [Weights](https://huggingface.co/Zhengyi/CRM)
|
8 |
+
|
9 |
+
https://github.com/thu-ml/CRM/assets/40787266/8b325bc0-aa74-4c26-92e8-a8f0c1079382
|
10 |
+
|
11 |
+
## Try CRM 🍻
|
12 |
+
* Try CRM at [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM).
|
13 |
+
* Try CRM at [Replicate Demo](https://replicate.com/camenduru/crm). Thanks [@camenduru](https://github.com/camenduru)!
|
14 |
+
|
15 |
+
## Install
|
16 |
+
|
17 |
+
### Step 1 - Base
|
18 |
+
|
19 |
+
Install package one by one, we use **python 3.9**
|
20 |
+
|
21 |
+
```bash
|
22 |
+
pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
|
23 |
+
pip install torch-scatter==2.1.1 -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
|
24 |
+
pip install kaolin==0.14.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-1.13.1_cu117.html
|
25 |
+
pip install -r requirements.txt
|
26 |
+
```
|
27 |
+
|
28 |
+
besides, one by one need to install xformers manually according to the official [doc](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers) (**conda no need**), e.g.
|
29 |
+
|
30 |
+
```bash
|
31 |
+
pip install ninja
|
32 |
+
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
|
33 |
+
```
|
34 |
+
|
35 |
+
### Step 2 - Nvdiffrast
|
36 |
+
|
37 |
+
Install nvdiffrast according to the official [doc](https://nvlabs.github.io/nvdiffrast/#installation), e.g.
|
38 |
+
|
39 |
+
```bash
|
40 |
+
pip install git+https://github.com/NVlabs/nvdiffrast
|
41 |
+
```
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
## Inference
|
46 |
+
|
47 |
+
We suggest gradio for a visualized inference.
|
48 |
+
|
49 |
+
```
|
50 |
+
gradio app.py
|
51 |
+
```
|
52 |
+
|
53 |
+
![image](https://github.com/thu-ml/CRM/assets/40787266/4354d22a-a641-4531-8408-c761ead8b1a2)
|
54 |
+
|
55 |
+
For inference in command lines, simply run
|
56 |
+
```bash
|
57 |
+
CUDA_VISIBLE_DEVICES="0" python run.py --inputdir "examples/kunkun.webp"
|
58 |
+
```
|
59 |
+
It will output the preprocessed image, generated 6-view images and CCMs and a 3D model in obj format.
|
60 |
+
|
61 |
+
**Tips:** (1) If the result is unsatisfatory, please check whether the input image is correctly pre-processed into a grey background. Otherwise the results will be unpredictable.
|
62 |
+
(2) Different from the [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM), this official implementation uses UV texture instead of vertex color. It has better texture than the online demo but longer generating time owing to the UV texturing.
|
63 |
+
|
64 |
+
## Todo List
|
65 |
+
- [x] Release inference code.
|
66 |
+
- [x] Release pretrained models.
|
67 |
+
- [ ] Optimize inference code to fit in low memery GPU.
|
68 |
+
- [ ] Upload training code.
|
69 |
+
|
70 |
+
## Acknowledgement
|
71 |
+
- [ImageDream](https://github.com/bytedance/ImageDream)
|
72 |
+
- [nvdiffrast](https://github.com/NVlabs/nvdiffrast)
|
73 |
+
- [kiuikit](https://github.com/ashawkey/kiuikit)
|
74 |
+
- [GET3D](https://github.com/nv-tlabs/GET3D)
|
75 |
+
|
76 |
+
## Citation
|
77 |
+
|
78 |
+
```
|
79 |
+
@article{wang2024crm,
|
80 |
+
title={CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model},
|
81 |
+
author={Zhengyi Wang and Yikai Wang and Yifei Chen and Chendong Xiang and Shuo Chen and Dajiang Yu and Chongxuan Li and Hang Su and Jun Zhu},
|
82 |
+
journal={arXiv preprint arXiv:2403.05034},
|
83 |
+
year={2024}
|
84 |
+
}
|
85 |
+
```
|
apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config:
|
2 |
+
# others
|
3 |
+
seed: 1234
|
4 |
+
num_frames: 7
|
5 |
+
mode: pixel
|
6 |
+
offset_noise: true
|
7 |
+
# model related
|
8 |
+
models:
|
9 |
+
config: imagedream/configs/sd_v2_base_ipmv_zero_SNR.yaml
|
10 |
+
resume: models/pixel.pth
|
11 |
+
# sampler related
|
12 |
+
sampler:
|
13 |
+
target: libs.sample.ImageDreamDiffusion
|
14 |
+
params:
|
15 |
+
mode: pixel
|
16 |
+
num_frames: 7
|
17 |
+
camera_views: [1, 2, 3, 4, 5, 0, 0]
|
18 |
+
ref_position: 6
|
19 |
+
random_background: false
|
20 |
+
offset_noise: true
|
21 |
+
resize_rate: 1.0
|
apps/third_party/CRM/configs/specs_objaverse_total.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Input": {
|
3 |
+
"img_num": 16,
|
4 |
+
"class": "all",
|
5 |
+
"camera_angle_num": 8,
|
6 |
+
"tet_grid_size": 80,
|
7 |
+
"validate_num": 16,
|
8 |
+
"scale": 0.95,
|
9 |
+
"radius": 3,
|
10 |
+
"resolution": [256, 256]
|
11 |
+
},
|
12 |
+
|
13 |
+
"Pretrain": {
|
14 |
+
"mode": null,
|
15 |
+
"sdf_threshold": 0.1,
|
16 |
+
"sdf_scale": 10,
|
17 |
+
"batch_infer": false,
|
18 |
+
"lr": 1e-4,
|
19 |
+
"radius": 0.5
|
20 |
+
},
|
21 |
+
|
22 |
+
"Train": {
|
23 |
+
"mode": "rnd",
|
24 |
+
"num_epochs": 500,
|
25 |
+
"grad_acc": 1,
|
26 |
+
"warm_up": 0,
|
27 |
+
"decay": 0.000,
|
28 |
+
"learning_rate": {
|
29 |
+
"init": 1e-4,
|
30 |
+
"sdf_decay": 1,
|
31 |
+
"rgb_decay": 1
|
32 |
+
},
|
33 |
+
"batch_size": 4,
|
34 |
+
"eva_iter": 80,
|
35 |
+
"eva_all_epoch": 10,
|
36 |
+
"tex_sup_mode": "blender",
|
37 |
+
"exp_uv_mesh": false,
|
38 |
+
"doub": false,
|
39 |
+
"random_bg": false,
|
40 |
+
"shift": 0,
|
41 |
+
"aug_shift": 0,
|
42 |
+
"geo_type": "flex"
|
43 |
+
},
|
44 |
+
|
45 |
+
"ArchSpecs": {
|
46 |
+
"unet_type": "diffusers",
|
47 |
+
"use_3D_aware": false,
|
48 |
+
"fea_concat": false,
|
49 |
+
"mlp_bias": true
|
50 |
+
},
|
51 |
+
|
52 |
+
"DecoderSpecs": {
|
53 |
+
"c_dim": 32,
|
54 |
+
"plane_resolution": 256
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
apps/third_party/CRM/configs/stage2-v2-snr.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config:
|
2 |
+
# others
|
3 |
+
seed: 1234
|
4 |
+
num_frames: 6
|
5 |
+
mode: pixel
|
6 |
+
offset_noise: true
|
7 |
+
gd_type: xyz
|
8 |
+
# model related
|
9 |
+
models:
|
10 |
+
config: imagedream/configs/sd_v2_base_ipmv_chin8_zero_snr.yaml
|
11 |
+
resume: models/xyz.pth
|
12 |
+
|
13 |
+
# eval related
|
14 |
+
sampler:
|
15 |
+
target: libs.sample.ImageDreamDiffusionStage2
|
16 |
+
params:
|
17 |
+
mode: pixel
|
18 |
+
num_frames: 6
|
19 |
+
camera_views: [1, 2, 3, 4, 5, 0]
|
20 |
+
ref_position: null
|
21 |
+
random_background: false
|
22 |
+
offset_noise: true
|
23 |
+
resize_rate: 1.0
|
24 |
+
|
25 |
+
|
apps/third_party/CRM/imagedream/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
apps/third_party/CRM/imagedream/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model_zoo import build_model
|
apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (219 Bytes). View file
|
|
apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (216 Bytes). View file
|
|
apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-310.pyc
ADDED
Binary file (2.83 kB). View file
|
|
apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-38.pyc
ADDED
Binary file (2.75 kB). View file
|
|
apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-38.pyc
ADDED
Binary file (1.79 kB). View file
|
|
apps/third_party/CRM/imagedream/camera_utils.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
def create_camera_to_world_matrix(elevation, azimuth):
|
6 |
+
elevation = np.radians(elevation)
|
7 |
+
azimuth = np.radians(azimuth)
|
8 |
+
# Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
|
9 |
+
x = np.cos(elevation) * np.sin(azimuth)
|
10 |
+
y = np.sin(elevation)
|
11 |
+
z = np.cos(elevation) * np.cos(azimuth)
|
12 |
+
|
13 |
+
# Calculate camera position, target, and up vectors
|
14 |
+
camera_pos = np.array([x, y, z])
|
15 |
+
target = np.array([0, 0, 0])
|
16 |
+
up = np.array([0, 1, 0])
|
17 |
+
|
18 |
+
# Construct view matrix
|
19 |
+
forward = target - camera_pos
|
20 |
+
forward /= np.linalg.norm(forward)
|
21 |
+
right = np.cross(forward, up)
|
22 |
+
right /= np.linalg.norm(right)
|
23 |
+
new_up = np.cross(right, forward)
|
24 |
+
new_up /= np.linalg.norm(new_up)
|
25 |
+
cam2world = np.eye(4)
|
26 |
+
cam2world[:3, :3] = np.array([right, new_up, -forward]).T
|
27 |
+
cam2world[:3, 3] = camera_pos
|
28 |
+
return cam2world
|
29 |
+
|
30 |
+
|
31 |
+
def convert_opengl_to_blender(camera_matrix):
|
32 |
+
if isinstance(camera_matrix, np.ndarray):
|
33 |
+
# Construct transformation matrix to convert from OpenGL space to Blender space
|
34 |
+
flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
35 |
+
camera_matrix_blender = np.dot(flip_yz, camera_matrix)
|
36 |
+
else:
|
37 |
+
# Construct transformation matrix to convert from OpenGL space to Blender space
|
38 |
+
flip_yz = torch.tensor(
|
39 |
+
[[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
|
40 |
+
)
|
41 |
+
if camera_matrix.ndim == 3:
|
42 |
+
flip_yz = flip_yz.unsqueeze(0)
|
43 |
+
camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
|
44 |
+
return camera_matrix_blender
|
45 |
+
|
46 |
+
|
47 |
+
def normalize_camera(camera_matrix):
|
48 |
+
"""normalize the camera location onto a unit-sphere"""
|
49 |
+
if isinstance(camera_matrix, np.ndarray):
|
50 |
+
camera_matrix = camera_matrix.reshape(-1, 4, 4)
|
51 |
+
translation = camera_matrix[:, :3, 3]
|
52 |
+
translation = translation / (
|
53 |
+
np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8
|
54 |
+
)
|
55 |
+
camera_matrix[:, :3, 3] = translation
|
56 |
+
else:
|
57 |
+
camera_matrix = camera_matrix.reshape(-1, 4, 4)
|
58 |
+
translation = camera_matrix[:, :3, 3]
|
59 |
+
translation = translation / (
|
60 |
+
torch.norm(translation, dim=1, keepdim=True) + 1e-8
|
61 |
+
)
|
62 |
+
camera_matrix[:, :3, 3] = translation
|
63 |
+
return camera_matrix.reshape(-1, 16)
|
64 |
+
|
65 |
+
|
66 |
+
def get_camera(
|
67 |
+
num_frames,
|
68 |
+
elevation=15,
|
69 |
+
azimuth_start=0,
|
70 |
+
azimuth_span=360,
|
71 |
+
blender_coord=True,
|
72 |
+
extra_view=False,
|
73 |
+
):
|
74 |
+
angle_gap = azimuth_span / num_frames
|
75 |
+
cameras = []
|
76 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
77 |
+
camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
|
78 |
+
if blender_coord:
|
79 |
+
camera_matrix = convert_opengl_to_blender(camera_matrix)
|
80 |
+
cameras.append(camera_matrix.flatten())
|
81 |
+
|
82 |
+
if extra_view:
|
83 |
+
dim = len(cameras[0])
|
84 |
+
cameras.append(np.zeros(dim))
|
85 |
+
return torch.tensor(np.stack(cameras, 0)).float()
|
86 |
+
|
87 |
+
|
88 |
+
def get_camera_for_index(data_index):
|
89 |
+
"""
|
90 |
+
按照当前我们的数据格式, 以000为正对我们的情况:
|
91 |
+
000是正面, ev: 0, azimuth: 0
|
92 |
+
001是左边, ev: 0, azimuth: -90
|
93 |
+
002是下面, ev: -90, azimuth: 0
|
94 |
+
003是背面, ev: 0, azimuth: 180
|
95 |
+
004是右边, ev: 0, azimuth: 90
|
96 |
+
005是上面, ev: 90, azimuth: 0
|
97 |
+
"""
|
98 |
+
params = [(0, 0), (0, -90), (-90, 0), (0, 180), (0, 90), (90, 0)]
|
99 |
+
return get_camera(1, *params[data_index])
|
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv.yaml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: imagedream.ldm.interface.LatentDiffusionInterface
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
timesteps: 1000
|
7 |
+
scale_factor: 0.18215
|
8 |
+
parameterization: "eps"
|
9 |
+
|
10 |
+
unet_config:
|
11 |
+
target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModel
|
12 |
+
params:
|
13 |
+
image_size: 32 # unused
|
14 |
+
in_channels: 4
|
15 |
+
out_channels: 4
|
16 |
+
model_channels: 320
|
17 |
+
attention_resolutions: [ 4, 2, 1 ]
|
18 |
+
num_res_blocks: 2
|
19 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
20 |
+
num_head_channels: 64 # need to fix for flash-attn
|
21 |
+
use_spatial_transformer: True
|
22 |
+
use_linear_in_transformer: True
|
23 |
+
transformer_depth: 1
|
24 |
+
context_dim: 1024
|
25 |
+
use_checkpoint: False
|
26 |
+
legacy: False
|
27 |
+
camera_dim: 16
|
28 |
+
with_ip: True
|
29 |
+
ip_dim: 16 # ip token length
|
30 |
+
ip_mode: "local_resample"
|
31 |
+
|
32 |
+
vae_config:
|
33 |
+
target: imagedream.ldm.models.autoencoder.AutoencoderKL
|
34 |
+
params:
|
35 |
+
embed_dim: 4
|
36 |
+
monitor: val/rec_loss
|
37 |
+
ddconfig:
|
38 |
+
#attn_type: "vanilla-xformers"
|
39 |
+
double_z: true
|
40 |
+
z_channels: 4
|
41 |
+
resolution: 256
|
42 |
+
in_channels: 3
|
43 |
+
out_ch: 3
|
44 |
+
ch: 128
|
45 |
+
ch_mult:
|
46 |
+
- 1
|
47 |
+
- 2
|
48 |
+
- 4
|
49 |
+
- 4
|
50 |
+
num_res_blocks: 2
|
51 |
+
attn_resolutions: []
|
52 |
+
dropout: 0.0
|
53 |
+
lossconfig:
|
54 |
+
target: torch.nn.Identity
|
55 |
+
|
56 |
+
clip_config:
|
57 |
+
target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
58 |
+
params:
|
59 |
+
freeze: True
|
60 |
+
layer: "penultimate"
|
61 |
+
ip_mode: "local_resample"
|
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_ch8.yaml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: imagedream.ldm.interface.LatentDiffusionInterface
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
timesteps: 1000
|
7 |
+
scale_factor: 0.18215
|
8 |
+
parameterization: "eps"
|
9 |
+
|
10 |
+
unet_config:
|
11 |
+
target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModel
|
12 |
+
params:
|
13 |
+
image_size: 32 # unused
|
14 |
+
in_channels: 8
|
15 |
+
out_channels: 8
|
16 |
+
model_channels: 320
|
17 |
+
attention_resolutions: [ 4, 2, 1 ]
|
18 |
+
num_res_blocks: 2
|
19 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
20 |
+
num_head_channels: 64 # need to fix for flash-attn
|
21 |
+
use_spatial_transformer: True
|
22 |
+
use_linear_in_transformer: True
|
23 |
+
transformer_depth: 1
|
24 |
+
context_dim: 1024
|
25 |
+
use_checkpoint: False
|
26 |
+
legacy: False
|
27 |
+
camera_dim: 16
|
28 |
+
with_ip: True
|
29 |
+
ip_dim: 16 # ip token length
|
30 |
+
ip_mode: "local_resample"
|
31 |
+
|
32 |
+
vae_config:
|
33 |
+
target: imagedream.ldm.models.autoencoder.AutoencoderKL
|
34 |
+
params:
|
35 |
+
embed_dim: 4
|
36 |
+
monitor: val/rec_loss
|
37 |
+
ddconfig:
|
38 |
+
#attn_type: "vanilla-xformers"
|
39 |
+
double_z: true
|
40 |
+
z_channels: 4
|
41 |
+
resolution: 256
|
42 |
+
in_channels: 3
|
43 |
+
out_ch: 3
|
44 |
+
ch: 128
|
45 |
+
ch_mult:
|
46 |
+
- 1
|
47 |
+
- 2
|
48 |
+
- 4
|
49 |
+
- 4
|
50 |
+
num_res_blocks: 2
|
51 |
+
attn_resolutions: []
|
52 |
+
dropout: 0.0
|
53 |
+
lossconfig:
|
54 |
+
target: torch.nn.Identity
|
55 |
+
|
56 |
+
clip_config:
|
57 |
+
target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
58 |
+
params:
|
59 |
+
freeze: True
|
60 |
+
layer: "penultimate"
|
61 |
+
ip_mode: "local_resample"
|
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_chin8.yaml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: imagedream.ldm.interface.LatentDiffusionInterface
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
timesteps: 1000
|
7 |
+
scale_factor: 0.18215
|
8 |
+
parameterization: "eps"
|
9 |
+
|
10 |
+
unet_config:
|
11 |
+
target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModelStage2
|
12 |
+
params:
|
13 |
+
image_size: 32 # unused
|
14 |
+
in_channels: 8
|
15 |
+
out_channels: 4
|
16 |
+
model_channels: 320
|
17 |
+
attention_resolutions: [ 4, 2, 1 ]
|
18 |
+
num_res_blocks: 2
|
19 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
20 |
+
num_head_channels: 64 # need to fix for flash-attn
|
21 |
+
use_spatial_transformer: True
|
22 |
+
use_linear_in_transformer: True
|
23 |
+
transformer_depth: 1
|
24 |
+
context_dim: 1024
|
25 |
+
use_checkpoint: False
|
26 |
+
legacy: False
|
27 |
+
camera_dim: 16
|
28 |
+
with_ip: True
|
29 |
+
ip_dim: 16 # ip token length
|
30 |
+
ip_mode: "local_resample"
|
31 |
+
|
32 |
+
vae_config:
|
33 |
+
target: imagedream.ldm.models.autoencoder.AutoencoderKL
|
34 |
+
params:
|
35 |
+
embed_dim: 4
|
36 |
+
monitor: val/rec_loss
|
37 |
+
ddconfig:
|
38 |
+
#attn_type: "vanilla-xformers"
|
39 |
+
double_z: true
|
40 |
+
z_channels: 4
|
41 |
+
resolution: 256
|
42 |
+
in_channels: 3
|
43 |
+
out_ch: 3
|
44 |
+
ch: 128
|
45 |
+
ch_mult:
|
46 |
+
- 1
|
47 |
+
- 2
|
48 |
+
- 4
|
49 |
+
- 4
|
50 |
+
num_res_blocks: 2
|
51 |
+
attn_resolutions: []
|
52 |
+
dropout: 0.0
|
53 |
+
lossconfig:
|
54 |
+
target: torch.nn.Identity
|
55 |
+
|
56 |
+
clip_config:
|
57 |
+
target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
58 |
+
params:
|
59 |
+
freeze: True
|
60 |
+
layer: "penultimate"
|
61 |
+
ip_mode: "local_resample"
|
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_chin8_zero_snr.yaml
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: imagedream.ldm.interface.LatentDiffusionInterface
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
timesteps: 1000
|
7 |
+
scale_factor: 0.18215
|
8 |
+
parameterization: "eps"
|
9 |
+
zero_snr: true
|
10 |
+
|
11 |
+
unet_config:
|
12 |
+
target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModelStage2
|
13 |
+
params:
|
14 |
+
image_size: 32 # unused
|
15 |
+
in_channels: 8
|
16 |
+
out_channels: 4
|
17 |
+
model_channels: 320
|
18 |
+
attention_resolutions: [ 4, 2, 1 ]
|
19 |
+
num_res_blocks: 2
|
20 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
21 |
+
num_head_channels: 64 # need to fix for flash-attn
|
22 |
+
use_spatial_transformer: True
|
23 |
+
use_linear_in_transformer: True
|
24 |
+
transformer_depth: 1
|
25 |
+
context_dim: 1024
|
26 |
+
use_checkpoint: False
|
27 |
+
legacy: False
|
28 |
+
camera_dim: 16
|
29 |
+
with_ip: True
|
30 |
+
ip_dim: 16 # ip token length
|
31 |
+
ip_mode: "local_resample"
|
32 |
+
|
33 |
+
vae_config:
|
34 |
+
target: imagedream.ldm.models.autoencoder.AutoencoderKL
|
35 |
+
params:
|
36 |
+
embed_dim: 4
|
37 |
+
monitor: val/rec_loss
|
38 |
+
ddconfig:
|
39 |
+
#attn_type: "vanilla-xformers"
|
40 |
+
double_z: true
|
41 |
+
z_channels: 4
|
42 |
+
resolution: 256
|
43 |
+
in_channels: 3
|
44 |
+
out_ch: 3
|
45 |
+
ch: 128
|
46 |
+
ch_mult:
|
47 |
+
- 1
|
48 |
+
- 2
|
49 |
+
- 4
|
50 |
+
- 4
|
51 |
+
num_res_blocks: 2
|
52 |
+
attn_resolutions: []
|
53 |
+
dropout: 0.0
|
54 |
+
lossconfig:
|
55 |
+
target: torch.nn.Identity
|
56 |
+
|
57 |
+
clip_config:
|
58 |
+
target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
59 |
+
params:
|
60 |
+
freeze: True
|
61 |
+
layer: "penultimate"
|
62 |
+
ip_mode: "local_resample"
|
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_local.yaml
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: imagedream.ldm.interface.LatentDiffusionInterface
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
timesteps: 1000
|
7 |
+
scale_factor: 0.18215
|
8 |
+
parameterization: "eps"
|
9 |
+
|
10 |
+
unet_config:
|
11 |
+
target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModel
|
12 |
+
params:
|
13 |
+
image_size: 32 # unused
|
14 |
+
in_channels: 4
|
15 |
+
out_channels: 4
|
16 |
+
model_channels: 320
|
17 |
+
attention_resolutions: [ 4, 2, 1 ]
|
18 |
+
num_res_blocks: 2
|
19 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
20 |
+
num_head_channels: 64 # need to fix for flash-attn
|
21 |
+
use_spatial_transformer: True
|
22 |
+
use_linear_in_transformer: True
|
23 |
+
transformer_depth: 1
|
24 |
+
context_dim: 1024
|
25 |
+
use_checkpoint: False
|
26 |
+
legacy: False
|
27 |
+
camera_dim: 16
|
28 |
+
with_ip: True
|
29 |
+
ip_dim: 16 # ip token length
|
30 |
+
ip_mode: "local_resample"
|
31 |
+
ip_weight: 1.0 # adjust for similarity to image
|
32 |
+
|
33 |
+
vae_config:
|
34 |
+
target: imagedream.ldm.models.autoencoder.AutoencoderKL
|
35 |
+
params:
|
36 |
+
embed_dim: 4
|
37 |
+
monitor: val/rec_loss
|
38 |
+
ddconfig:
|
39 |
+
#attn_type: "vanilla-xformers"
|
40 |
+
double_z: true
|
41 |
+
z_channels: 4
|
42 |
+
resolution: 256
|
43 |
+
in_channels: 3
|
44 |
+
out_ch: 3
|
45 |
+
ch: 128
|
46 |
+
ch_mult:
|
47 |
+
- 1
|
48 |
+
- 2
|
49 |
+
- 4
|
50 |
+
- 4
|
51 |
+
num_res_blocks: 2
|
52 |
+
attn_resolutions: []
|
53 |
+
dropout: 0.0
|
54 |
+
lossconfig:
|
55 |
+
target: torch.nn.Identity
|
56 |
+
|
57 |
+
clip_config:
|
58 |
+
target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
59 |
+
params:
|
60 |
+
freeze: True
|
61 |
+
layer: "penultimate"
|
62 |
+
ip_mode: "local_resample"
|
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_zero_SNR.yaml
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: imagedream.ldm.interface.LatentDiffusionInterface
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
timesteps: 1000
|
7 |
+
scale_factor: 0.18215
|
8 |
+
parameterization: "eps"
|
9 |
+
zero_snr: true
|
10 |
+
|
11 |
+
unet_config:
|
12 |
+
target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModel
|
13 |
+
params:
|
14 |
+
image_size: 32 # unused
|
15 |
+
in_channels: 4
|
16 |
+
out_channels: 4
|
17 |
+
model_channels: 320
|
18 |
+
attention_resolutions: [ 4, 2, 1 ]
|
19 |
+
num_res_blocks: 2
|
20 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
21 |
+
num_head_channels: 64 # need to fix for flash-attn
|
22 |
+
use_spatial_transformer: True
|
23 |
+
use_linear_in_transformer: True
|
24 |
+
transformer_depth: 1
|
25 |
+
context_dim: 1024
|
26 |
+
use_checkpoint: False
|
27 |
+
legacy: False
|
28 |
+
camera_dim: 16
|
29 |
+
with_ip: True
|
30 |
+
ip_dim: 16 # ip token length
|
31 |
+
ip_mode: "local_resample"
|
32 |
+
|
33 |
+
vae_config:
|
34 |
+
target: imagedream.ldm.models.autoencoder.AutoencoderKL
|
35 |
+
params:
|
36 |
+
embed_dim: 4
|
37 |
+
monitor: val/rec_loss
|
38 |
+
ddconfig:
|
39 |
+
#attn_type: "vanilla-xformers"
|
40 |
+
double_z: true
|
41 |
+
z_channels: 4
|
42 |
+
resolution: 256
|
43 |
+
in_channels: 3
|
44 |
+
out_ch: 3
|
45 |
+
ch: 128
|
46 |
+
ch_mult:
|
47 |
+
- 1
|
48 |
+
- 2
|
49 |
+
- 4
|
50 |
+
- 4
|
51 |
+
num_res_blocks: 2
|
52 |
+
attn_resolutions: []
|
53 |
+
dropout: 0.0
|
54 |
+
lossconfig:
|
55 |
+
target: torch.nn.Identity
|
56 |
+
|
57 |
+
clip_config:
|
58 |
+
target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
59 |
+
params:
|
60 |
+
freeze: True
|
61 |
+
layer: "penultimate"
|
62 |
+
ip_mode: "local_resample"
|
apps/third_party/CRM/imagedream/ldm/__init__.py
ADDED
File without changes
|
apps/third_party/CRM/imagedream/ldm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (178 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (175 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/__pycache__/interface.cpython-310.pyc
ADDED
Binary file (6.27 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/__pycache__/interface.cpython-38.pyc
ADDED
Binary file (6.33 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/__pycache__/util.cpython-310.pyc
ADDED
Binary file (6.75 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/__pycache__/util.cpython-38.pyc
ADDED
Binary file (6.73 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/interface.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .modules.diffusionmodules.util import (
|
9 |
+
make_beta_schedule,
|
10 |
+
extract_into_tensor,
|
11 |
+
enforce_zero_terminal_snr,
|
12 |
+
noise_like,
|
13 |
+
)
|
14 |
+
from .util import exists, default, instantiate_from_config
|
15 |
+
from .modules.distributions.distributions import DiagonalGaussianDistribution
|
16 |
+
|
17 |
+
|
18 |
+
class DiffusionWrapper(nn.Module):
|
19 |
+
def __init__(self, diffusion_model):
|
20 |
+
super().__init__()
|
21 |
+
self.diffusion_model = diffusion_model
|
22 |
+
|
23 |
+
def forward(self, *args, **kwargs):
|
24 |
+
return self.diffusion_model(*args, **kwargs)
|
25 |
+
|
26 |
+
|
27 |
+
class LatentDiffusionInterface(nn.Module):
|
28 |
+
"""a simple interface class for LDM inference"""
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
unet_config,
|
33 |
+
clip_config,
|
34 |
+
vae_config,
|
35 |
+
parameterization="eps",
|
36 |
+
scale_factor=0.18215,
|
37 |
+
beta_schedule="linear",
|
38 |
+
timesteps=1000,
|
39 |
+
linear_start=0.00085,
|
40 |
+
linear_end=0.0120,
|
41 |
+
cosine_s=8e-3,
|
42 |
+
given_betas=None,
|
43 |
+
zero_snr=False,
|
44 |
+
*args,
|
45 |
+
**kwargs,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
unet = instantiate_from_config(unet_config)
|
50 |
+
self.model = DiffusionWrapper(unet)
|
51 |
+
self.clip_model = instantiate_from_config(clip_config)
|
52 |
+
self.vae_model = instantiate_from_config(vae_config)
|
53 |
+
|
54 |
+
self.parameterization = parameterization
|
55 |
+
self.scale_factor = scale_factor
|
56 |
+
self.register_schedule(
|
57 |
+
given_betas=given_betas,
|
58 |
+
beta_schedule=beta_schedule,
|
59 |
+
timesteps=timesteps,
|
60 |
+
linear_start=linear_start,
|
61 |
+
linear_end=linear_end,
|
62 |
+
cosine_s=cosine_s,
|
63 |
+
zero_snr=zero_snr
|
64 |
+
)
|
65 |
+
|
66 |
+
def register_schedule(
|
67 |
+
self,
|
68 |
+
given_betas=None,
|
69 |
+
beta_schedule="linear",
|
70 |
+
timesteps=1000,
|
71 |
+
linear_start=1e-4,
|
72 |
+
linear_end=2e-2,
|
73 |
+
cosine_s=8e-3,
|
74 |
+
zero_snr=False
|
75 |
+
):
|
76 |
+
if exists(given_betas):
|
77 |
+
betas = given_betas
|
78 |
+
else:
|
79 |
+
betas = make_beta_schedule(
|
80 |
+
beta_schedule,
|
81 |
+
timesteps,
|
82 |
+
linear_start=linear_start,
|
83 |
+
linear_end=linear_end,
|
84 |
+
cosine_s=cosine_s,
|
85 |
+
)
|
86 |
+
if zero_snr:
|
87 |
+
print("--- using zero snr---")
|
88 |
+
betas = enforce_zero_terminal_snr(betas).numpy()
|
89 |
+
alphas = 1.0 - betas
|
90 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
91 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
92 |
+
|
93 |
+
(timesteps,) = betas.shape
|
94 |
+
self.num_timesteps = int(timesteps)
|
95 |
+
self.linear_start = linear_start
|
96 |
+
self.linear_end = linear_end
|
97 |
+
assert (
|
98 |
+
alphas_cumprod.shape[0] == self.num_timesteps
|
99 |
+
), "alphas have to be defined for each timestep"
|
100 |
+
|
101 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
102 |
+
|
103 |
+
self.register_buffer("betas", to_torch(betas))
|
104 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
105 |
+
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
106 |
+
|
107 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
108 |
+
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
109 |
+
self.register_buffer(
|
110 |
+
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
111 |
+
)
|
112 |
+
self.register_buffer(
|
113 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
114 |
+
)
|
115 |
+
eps = 1e-8 # adding small epsilon value to avoid devide by zero error
|
116 |
+
self.register_buffer(
|
117 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / (alphas_cumprod + eps)))
|
118 |
+
)
|
119 |
+
self.register_buffer(
|
120 |
+
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / (alphas_cumprod + eps) - 1))
|
121 |
+
)
|
122 |
+
|
123 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
124 |
+
self.v_posterior = 0
|
125 |
+
posterior_variance = (1 - self.v_posterior) * betas * (
|
126 |
+
1.0 - alphas_cumprod_prev
|
127 |
+
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
128 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
129 |
+
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
130 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
131 |
+
self.register_buffer(
|
132 |
+
"posterior_log_variance_clipped",
|
133 |
+
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
134 |
+
)
|
135 |
+
self.register_buffer(
|
136 |
+
"posterior_mean_coef1",
|
137 |
+
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
138 |
+
)
|
139 |
+
self.register_buffer(
|
140 |
+
"posterior_mean_coef2",
|
141 |
+
to_torch(
|
142 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
143 |
+
),
|
144 |
+
)
|
145 |
+
|
146 |
+
def q_sample(self, x_start, t, noise=None):
|
147 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
148 |
+
return (
|
149 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
150 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
151 |
+
* noise
|
152 |
+
)
|
153 |
+
|
154 |
+
def get_v(self, x, noise, t):
|
155 |
+
return (
|
156 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
|
157 |
+
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
158 |
+
)
|
159 |
+
|
160 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
161 |
+
return (
|
162 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
163 |
+
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
164 |
+
* noise
|
165 |
+
)
|
166 |
+
|
167 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
168 |
+
return (
|
169 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
|
170 |
+
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
171 |
+
)
|
172 |
+
|
173 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
174 |
+
return (
|
175 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
|
176 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
|
177 |
+
* x_t
|
178 |
+
)
|
179 |
+
|
180 |
+
def apply_model(self, x_noisy, t, cond, **kwargs):
|
181 |
+
assert isinstance(cond, dict), "cond has to be a dictionary"
|
182 |
+
return self.model(x_noisy, t, **cond, **kwargs)
|
183 |
+
|
184 |
+
def get_learned_conditioning(self, prompts: List[str]):
|
185 |
+
return self.clip_model(prompts)
|
186 |
+
|
187 |
+
def get_learned_image_conditioning(self, images):
|
188 |
+
return self.clip_model.forward_image(images)
|
189 |
+
|
190 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
191 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
192 |
+
z = encoder_posterior.sample()
|
193 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
194 |
+
z = encoder_posterior
|
195 |
+
else:
|
196 |
+
raise NotImplementedError(
|
197 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
198 |
+
)
|
199 |
+
return self.scale_factor * z
|
200 |
+
|
201 |
+
def encode_first_stage(self, x):
|
202 |
+
return self.vae_model.encode(x)
|
203 |
+
|
204 |
+
def decode_first_stage(self, z):
|
205 |
+
z = 1.0 / self.scale_factor * z
|
206 |
+
return self.vae_model.decode(z)
|
apps/third_party/CRM/imagedream/ldm/models/__init__.py
ADDED
File without changes
|
apps/third_party/CRM/imagedream/ldm/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (182 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/__pycache__/autoencoder.cpython-310.pyc
ADDED
Binary file (7.79 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/__pycache__/autoencoder.cpython-38.pyc
ADDED
Binary file (7.68 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from contextlib import contextmanager
|
4 |
+
|
5 |
+
from ..modules.diffusionmodules.model import Encoder, Decoder
|
6 |
+
from ..modules.distributions.distributions import DiagonalGaussianDistribution
|
7 |
+
|
8 |
+
from ..util import instantiate_from_config
|
9 |
+
from ..modules.ema import LitEma
|
10 |
+
|
11 |
+
|
12 |
+
class AutoencoderKL(torch.nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
ddconfig,
|
16 |
+
lossconfig,
|
17 |
+
embed_dim,
|
18 |
+
ckpt_path=None,
|
19 |
+
ignore_keys=[],
|
20 |
+
image_key="image",
|
21 |
+
colorize_nlabels=None,
|
22 |
+
monitor=None,
|
23 |
+
ema_decay=None,
|
24 |
+
learn_logvar=False,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.learn_logvar = learn_logvar
|
28 |
+
self.image_key = image_key
|
29 |
+
self.encoder = Encoder(**ddconfig)
|
30 |
+
self.decoder = Decoder(**ddconfig)
|
31 |
+
self.loss = instantiate_from_config(lossconfig)
|
32 |
+
assert ddconfig["double_z"]
|
33 |
+
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
34 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
35 |
+
self.embed_dim = embed_dim
|
36 |
+
if colorize_nlabels is not None:
|
37 |
+
assert type(colorize_nlabels) == int
|
38 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
39 |
+
if monitor is not None:
|
40 |
+
self.monitor = monitor
|
41 |
+
|
42 |
+
self.use_ema = ema_decay is not None
|
43 |
+
if self.use_ema:
|
44 |
+
self.ema_decay = ema_decay
|
45 |
+
assert 0.0 < ema_decay < 1.0
|
46 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
47 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
48 |
+
|
49 |
+
if ckpt_path is not None:
|
50 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
51 |
+
|
52 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
53 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
54 |
+
keys = list(sd.keys())
|
55 |
+
for k in keys:
|
56 |
+
for ik in ignore_keys:
|
57 |
+
if k.startswith(ik):
|
58 |
+
print("Deleting key {} from state_dict.".format(k))
|
59 |
+
del sd[k]
|
60 |
+
self.load_state_dict(sd, strict=False)
|
61 |
+
print(f"Restored from {path}")
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def on_train_batch_end(self, *args, **kwargs):
|
79 |
+
if self.use_ema:
|
80 |
+
self.model_ema(self)
|
81 |
+
|
82 |
+
def encode(self, x):
|
83 |
+
h = self.encoder(x)
|
84 |
+
moments = self.quant_conv(h)
|
85 |
+
posterior = DiagonalGaussianDistribution(moments)
|
86 |
+
return posterior
|
87 |
+
|
88 |
+
def decode(self, z):
|
89 |
+
z = self.post_quant_conv(z)
|
90 |
+
dec = self.decoder(z)
|
91 |
+
return dec
|
92 |
+
|
93 |
+
def forward(self, input, sample_posterior=True):
|
94 |
+
posterior = self.encode(input)
|
95 |
+
if sample_posterior:
|
96 |
+
z = posterior.sample()
|
97 |
+
else:
|
98 |
+
z = posterior.mode()
|
99 |
+
dec = self.decode(z)
|
100 |
+
return dec, posterior
|
101 |
+
|
102 |
+
def get_input(self, batch, k):
|
103 |
+
x = batch[k]
|
104 |
+
if len(x.shape) == 3:
|
105 |
+
x = x[..., None]
|
106 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
107 |
+
return x
|
108 |
+
|
109 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
110 |
+
inputs = self.get_input(batch, self.image_key)
|
111 |
+
reconstructions, posterior = self(inputs)
|
112 |
+
|
113 |
+
if optimizer_idx == 0:
|
114 |
+
# train encoder+decoder+logvar
|
115 |
+
aeloss, log_dict_ae = self.loss(
|
116 |
+
inputs,
|
117 |
+
reconstructions,
|
118 |
+
posterior,
|
119 |
+
optimizer_idx,
|
120 |
+
self.global_step,
|
121 |
+
last_layer=self.get_last_layer(),
|
122 |
+
split="train",
|
123 |
+
)
|
124 |
+
self.log(
|
125 |
+
"aeloss",
|
126 |
+
aeloss,
|
127 |
+
prog_bar=True,
|
128 |
+
logger=True,
|
129 |
+
on_step=True,
|
130 |
+
on_epoch=True,
|
131 |
+
)
|
132 |
+
self.log_dict(
|
133 |
+
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
134 |
+
)
|
135 |
+
return aeloss
|
136 |
+
|
137 |
+
if optimizer_idx == 1:
|
138 |
+
# train the discriminator
|
139 |
+
discloss, log_dict_disc = self.loss(
|
140 |
+
inputs,
|
141 |
+
reconstructions,
|
142 |
+
posterior,
|
143 |
+
optimizer_idx,
|
144 |
+
self.global_step,
|
145 |
+
last_layer=self.get_last_layer(),
|
146 |
+
split="train",
|
147 |
+
)
|
148 |
+
|
149 |
+
self.log(
|
150 |
+
"discloss",
|
151 |
+
discloss,
|
152 |
+
prog_bar=True,
|
153 |
+
logger=True,
|
154 |
+
on_step=True,
|
155 |
+
on_epoch=True,
|
156 |
+
)
|
157 |
+
self.log_dict(
|
158 |
+
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
159 |
+
)
|
160 |
+
return discloss
|
161 |
+
|
162 |
+
def validation_step(self, batch, batch_idx):
|
163 |
+
log_dict = self._validation_step(batch, batch_idx)
|
164 |
+
with self.ema_scope():
|
165 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
166 |
+
return log_dict
|
167 |
+
|
168 |
+
def _validation_step(self, batch, batch_idx, postfix=""):
|
169 |
+
inputs = self.get_input(batch, self.image_key)
|
170 |
+
reconstructions, posterior = self(inputs)
|
171 |
+
aeloss, log_dict_ae = self.loss(
|
172 |
+
inputs,
|
173 |
+
reconstructions,
|
174 |
+
posterior,
|
175 |
+
0,
|
176 |
+
self.global_step,
|
177 |
+
last_layer=self.get_last_layer(),
|
178 |
+
split="val" + postfix,
|
179 |
+
)
|
180 |
+
|
181 |
+
discloss, log_dict_disc = self.loss(
|
182 |
+
inputs,
|
183 |
+
reconstructions,
|
184 |
+
posterior,
|
185 |
+
1,
|
186 |
+
self.global_step,
|
187 |
+
last_layer=self.get_last_layer(),
|
188 |
+
split="val" + postfix,
|
189 |
+
)
|
190 |
+
|
191 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
192 |
+
self.log_dict(log_dict_ae)
|
193 |
+
self.log_dict(log_dict_disc)
|
194 |
+
return self.log_dict
|
195 |
+
|
196 |
+
def configure_optimizers(self):
|
197 |
+
lr = self.learning_rate
|
198 |
+
ae_params_list = (
|
199 |
+
list(self.encoder.parameters())
|
200 |
+
+ list(self.decoder.parameters())
|
201 |
+
+ list(self.quant_conv.parameters())
|
202 |
+
+ list(self.post_quant_conv.parameters())
|
203 |
+
)
|
204 |
+
if self.learn_logvar:
|
205 |
+
print(f"{self.__class__.__name__}: Learning logvar")
|
206 |
+
ae_params_list.append(self.loss.logvar)
|
207 |
+
opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9))
|
208 |
+
opt_disc = torch.optim.Adam(
|
209 |
+
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
210 |
+
)
|
211 |
+
return [opt_ae, opt_disc], []
|
212 |
+
|
213 |
+
def get_last_layer(self):
|
214 |
+
return self.decoder.conv_out.weight
|
215 |
+
|
216 |
+
@torch.no_grad()
|
217 |
+
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
218 |
+
log = dict()
|
219 |
+
x = self.get_input(batch, self.image_key)
|
220 |
+
x = x.to(self.device)
|
221 |
+
if not only_inputs:
|
222 |
+
xrec, posterior = self(x)
|
223 |
+
if x.shape[1] > 3:
|
224 |
+
# colorize with random projection
|
225 |
+
assert xrec.shape[1] > 3
|
226 |
+
x = self.to_rgb(x)
|
227 |
+
xrec = self.to_rgb(xrec)
|
228 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
229 |
+
log["reconstructions"] = xrec
|
230 |
+
if log_ema or self.use_ema:
|
231 |
+
with self.ema_scope():
|
232 |
+
xrec_ema, posterior_ema = self(x)
|
233 |
+
if x.shape[1] > 3:
|
234 |
+
# colorize with random projection
|
235 |
+
assert xrec_ema.shape[1] > 3
|
236 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
237 |
+
log["samples_ema"] = self.decode(
|
238 |
+
torch.randn_like(posterior_ema.sample())
|
239 |
+
)
|
240 |
+
log["reconstructions_ema"] = xrec_ema
|
241 |
+
log["inputs"] = x
|
242 |
+
return log
|
243 |
+
|
244 |
+
def to_rgb(self, x):
|
245 |
+
assert self.image_key == "segmentation"
|
246 |
+
if not hasattr(self, "colorize"):
|
247 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
248 |
+
x = F.conv2d(x, weight=self.colorize)
|
249 |
+
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
250 |
+
return x
|
251 |
+
|
252 |
+
|
253 |
+
class IdentityFirstStage(torch.nn.Module):
|
254 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
255 |
+
self.vq_interface = vq_interface
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
def encode(self, x, *args, **kwargs):
|
259 |
+
return x
|
260 |
+
|
261 |
+
def decode(self, x, *args, **kwargs):
|
262 |
+
return x
|
263 |
+
|
264 |
+
def quantize(self, x, *args, **kwargs):
|
265 |
+
if self.vq_interface:
|
266 |
+
return x, None, [None, None, None]
|
267 |
+
return x
|
268 |
+
|
269 |
+
def forward(self, x, *args, **kwargs):
|
270 |
+
return x
|
apps/third_party/CRM/imagedream/ldm/models/diffusion/__init__.py
ADDED
File without changes
|
apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (192 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc
ADDED
Binary file (8.8 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc
ADDED
Binary file (8.77 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ...modules.diffusionmodules.util import (
|
9 |
+
make_ddim_sampling_parameters,
|
10 |
+
make_ddim_timesteps,
|
11 |
+
noise_like,
|
12 |
+
extract_into_tensor,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class DDIMSampler(object):
|
17 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
18 |
+
super().__init__()
|
19 |
+
self.model = model
|
20 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
21 |
+
self.schedule = schedule
|
22 |
+
|
23 |
+
def register_buffer(self, name, attr):
|
24 |
+
if type(attr) == torch.Tensor:
|
25 |
+
if attr.device != torch.device("cuda"):
|
26 |
+
attr = attr.to(torch.device("cuda"))
|
27 |
+
setattr(self, name, attr)
|
28 |
+
|
29 |
+
def make_schedule(
|
30 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
31 |
+
):
|
32 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
33 |
+
ddim_discr_method=ddim_discretize,
|
34 |
+
num_ddim_timesteps=ddim_num_steps,
|
35 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
36 |
+
verbose=verbose,
|
37 |
+
)
|
38 |
+
alphas_cumprod = self.model.alphas_cumprod
|
39 |
+
assert (
|
40 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
41 |
+
), "alphas have to be defined for each timestep"
|
42 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
43 |
+
|
44 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
45 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
46 |
+
self.register_buffer(
|
47 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
48 |
+
)
|
49 |
+
|
50 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
51 |
+
self.register_buffer(
|
52 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
53 |
+
)
|
54 |
+
self.register_buffer(
|
55 |
+
"sqrt_one_minus_alphas_cumprod",
|
56 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
57 |
+
)
|
58 |
+
self.register_buffer(
|
59 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
60 |
+
)
|
61 |
+
self.register_buffer(
|
62 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
63 |
+
)
|
64 |
+
self.register_buffer(
|
65 |
+
"sqrt_recipm1_alphas_cumprod",
|
66 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
67 |
+
)
|
68 |
+
|
69 |
+
# ddim sampling parameters
|
70 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
71 |
+
alphacums=alphas_cumprod.cpu(),
|
72 |
+
ddim_timesteps=self.ddim_timesteps,
|
73 |
+
eta=ddim_eta,
|
74 |
+
verbose=verbose,
|
75 |
+
)
|
76 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
77 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
78 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
79 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
80 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
81 |
+
(1 - self.alphas_cumprod_prev)
|
82 |
+
/ (1 - self.alphas_cumprod)
|
83 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
84 |
+
)
|
85 |
+
self.register_buffer(
|
86 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
87 |
+
)
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def sample(
|
91 |
+
self,
|
92 |
+
S,
|
93 |
+
batch_size,
|
94 |
+
shape,
|
95 |
+
conditioning=None,
|
96 |
+
callback=None,
|
97 |
+
normals_sequence=None,
|
98 |
+
img_callback=None,
|
99 |
+
quantize_x0=False,
|
100 |
+
eta=0.0,
|
101 |
+
mask=None,
|
102 |
+
x0=None,
|
103 |
+
temperature=1.0,
|
104 |
+
noise_dropout=0.0,
|
105 |
+
score_corrector=None,
|
106 |
+
corrector_kwargs=None,
|
107 |
+
verbose=True,
|
108 |
+
x_T=None,
|
109 |
+
log_every_t=100,
|
110 |
+
unconditional_guidance_scale=1.0,
|
111 |
+
unconditional_conditioning=None,
|
112 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
if conditioning is not None:
|
116 |
+
if isinstance(conditioning, dict):
|
117 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
118 |
+
if cbs != batch_size:
|
119 |
+
print(
|
120 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
if conditioning.shape[0] != batch_size:
|
124 |
+
print(
|
125 |
+
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
126 |
+
)
|
127 |
+
|
128 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
129 |
+
# sampling
|
130 |
+
C, H, W = shape
|
131 |
+
size = (batch_size, C, H, W)
|
132 |
+
|
133 |
+
samples, intermediates = self.ddim_sampling(
|
134 |
+
conditioning,
|
135 |
+
size,
|
136 |
+
callback=callback,
|
137 |
+
img_callback=img_callback,
|
138 |
+
quantize_denoised=quantize_x0,
|
139 |
+
mask=mask,
|
140 |
+
x0=x0,
|
141 |
+
ddim_use_original_steps=False,
|
142 |
+
noise_dropout=noise_dropout,
|
143 |
+
temperature=temperature,
|
144 |
+
score_corrector=score_corrector,
|
145 |
+
corrector_kwargs=corrector_kwargs,
|
146 |
+
x_T=x_T,
|
147 |
+
log_every_t=log_every_t,
|
148 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
149 |
+
unconditional_conditioning=unconditional_conditioning,
|
150 |
+
**kwargs,
|
151 |
+
)
|
152 |
+
return samples, intermediates
|
153 |
+
|
154 |
+
@torch.no_grad()
|
155 |
+
def ddim_sampling(
|
156 |
+
self,
|
157 |
+
cond,
|
158 |
+
shape,
|
159 |
+
x_T=None,
|
160 |
+
ddim_use_original_steps=False,
|
161 |
+
callback=None,
|
162 |
+
timesteps=None,
|
163 |
+
quantize_denoised=False,
|
164 |
+
mask=None,
|
165 |
+
x0=None,
|
166 |
+
img_callback=None,
|
167 |
+
log_every_t=100,
|
168 |
+
temperature=1.0,
|
169 |
+
noise_dropout=0.0,
|
170 |
+
score_corrector=None,
|
171 |
+
corrector_kwargs=None,
|
172 |
+
unconditional_guidance_scale=1.0,
|
173 |
+
unconditional_conditioning=None,
|
174 |
+
**kwargs,
|
175 |
+
):
|
176 |
+
"""
|
177 |
+
when inference time: all values of parameter
|
178 |
+
cond.keys(): dict_keys(['context', 'camera', 'num_frames', 'ip', 'ip_img'])
|
179 |
+
shape: (5, 4, 32, 32)
|
180 |
+
x_T: None
|
181 |
+
ddim_use_original_steps: False
|
182 |
+
timesteps: None
|
183 |
+
callback: None
|
184 |
+
quantize_denoised: False
|
185 |
+
mask: None
|
186 |
+
image_callback: None
|
187 |
+
log_every_t: 100
|
188 |
+
temperature: 1.0
|
189 |
+
noise_dropout: 0.0
|
190 |
+
score_corrector: None
|
191 |
+
corrector_kwargs: None
|
192 |
+
unconditional_guidance_scale: 5
|
193 |
+
unconditional_conditioning.keys(): dict_keys(['context', 'camera', 'num_frames', 'ip', 'ip_img'])
|
194 |
+
kwargs: {}
|
195 |
+
"""
|
196 |
+
device = self.model.betas.device
|
197 |
+
b = shape[0]
|
198 |
+
if x_T is None:
|
199 |
+
img = torch.randn(shape, device=device) # shape: torch.Size([5, 4, 32, 32]) mean: -0.00, std: 1.00, min: -3.64, max: 3.94
|
200 |
+
else:
|
201 |
+
img = x_T
|
202 |
+
|
203 |
+
if timesteps is None: # equal with set time step in hf
|
204 |
+
timesteps = (
|
205 |
+
self.ddpm_num_timesteps
|
206 |
+
if ddim_use_original_steps
|
207 |
+
else self.ddim_timesteps
|
208 |
+
)
|
209 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
210 |
+
subset_end = (
|
211 |
+
int(
|
212 |
+
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
213 |
+
* self.ddim_timesteps.shape[0]
|
214 |
+
)
|
215 |
+
- 1
|
216 |
+
)
|
217 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
218 |
+
|
219 |
+
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
220 |
+
time_range = ( # reversed timesteps
|
221 |
+
reversed(range(0, timesteps))
|
222 |
+
if ddim_use_original_steps
|
223 |
+
else np.flip(timesteps)
|
224 |
+
)
|
225 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
226 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
227 |
+
for i, step in enumerate(iterator):
|
228 |
+
index = total_steps - i - 1
|
229 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
230 |
+
|
231 |
+
if mask is not None:
|
232 |
+
assert x0 is not None
|
233 |
+
img_orig = self.model.q_sample(
|
234 |
+
x0, ts
|
235 |
+
) # TODO: deterministic forward pass?
|
236 |
+
img = img_orig * mask + (1.0 - mask) * img
|
237 |
+
|
238 |
+
outs = self.p_sample_ddim(
|
239 |
+
img,
|
240 |
+
cond,
|
241 |
+
ts,
|
242 |
+
index=index,
|
243 |
+
use_original_steps=ddim_use_original_steps,
|
244 |
+
quantize_denoised=quantize_denoised,
|
245 |
+
temperature=temperature,
|
246 |
+
noise_dropout=noise_dropout,
|
247 |
+
score_corrector=score_corrector,
|
248 |
+
corrector_kwargs=corrector_kwargs,
|
249 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
250 |
+
unconditional_conditioning=unconditional_conditioning,
|
251 |
+
**kwargs,
|
252 |
+
)
|
253 |
+
img, pred_x0 = outs
|
254 |
+
if callback:
|
255 |
+
callback(i)
|
256 |
+
if img_callback:
|
257 |
+
img_callback(pred_x0, i)
|
258 |
+
|
259 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
260 |
+
intermediates["x_inter"].append(img)
|
261 |
+
intermediates["pred_x0"].append(pred_x0)
|
262 |
+
|
263 |
+
return img, intermediates
|
264 |
+
|
265 |
+
@torch.no_grad()
|
266 |
+
def p_sample_ddim(
|
267 |
+
self,
|
268 |
+
x,
|
269 |
+
c,
|
270 |
+
t,
|
271 |
+
index,
|
272 |
+
repeat_noise=False,
|
273 |
+
use_original_steps=False,
|
274 |
+
quantize_denoised=False,
|
275 |
+
temperature=1.0,
|
276 |
+
noise_dropout=0.0,
|
277 |
+
score_corrector=None,
|
278 |
+
corrector_kwargs=None,
|
279 |
+
unconditional_guidance_scale=1.0,
|
280 |
+
unconditional_conditioning=None,
|
281 |
+
dynamic_threshold=None,
|
282 |
+
**kwargs,
|
283 |
+
):
|
284 |
+
b, *_, device = *x.shape, x.device
|
285 |
+
|
286 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
287 |
+
model_output = self.model.apply_model(x, t, c)
|
288 |
+
else:
|
289 |
+
x_in = torch.cat([x] * 2)
|
290 |
+
t_in = torch.cat([t] * 2)
|
291 |
+
if isinstance(c, dict):
|
292 |
+
assert isinstance(unconditional_conditioning, dict)
|
293 |
+
c_in = dict()
|
294 |
+
for k in c:
|
295 |
+
if isinstance(c[k], list):
|
296 |
+
c_in[k] = [
|
297 |
+
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
298 |
+
for i in range(len(c[k]))
|
299 |
+
]
|
300 |
+
elif isinstance(c[k], torch.Tensor):
|
301 |
+
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
302 |
+
else:
|
303 |
+
assert c[k] == unconditional_conditioning[k]
|
304 |
+
c_in[k] = c[k]
|
305 |
+
elif isinstance(c, list):
|
306 |
+
c_in = list()
|
307 |
+
assert isinstance(unconditional_conditioning, list)
|
308 |
+
for i in range(len(c)):
|
309 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
310 |
+
else:
|
311 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
312 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
313 |
+
model_output = model_uncond + unconditional_guidance_scale * (
|
314 |
+
model_t - model_uncond
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
if self.model.parameterization == "v":
|
319 |
+
print("using v!")
|
320 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
321 |
+
else:
|
322 |
+
e_t = model_output
|
323 |
+
|
324 |
+
if score_corrector is not None:
|
325 |
+
assert self.model.parameterization == "eps", "not implemented"
|
326 |
+
e_t = score_corrector.modify_score(
|
327 |
+
self.model, e_t, x, t, c, **corrector_kwargs
|
328 |
+
)
|
329 |
+
|
330 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
331 |
+
alphas_prev = (
|
332 |
+
self.model.alphas_cumprod_prev
|
333 |
+
if use_original_steps
|
334 |
+
else self.ddim_alphas_prev
|
335 |
+
)
|
336 |
+
sqrt_one_minus_alphas = (
|
337 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
338 |
+
if use_original_steps
|
339 |
+
else self.ddim_sqrt_one_minus_alphas
|
340 |
+
)
|
341 |
+
sigmas = (
|
342 |
+
self.model.ddim_sigmas_for_original_num_steps
|
343 |
+
if use_original_steps
|
344 |
+
else self.ddim_sigmas
|
345 |
+
)
|
346 |
+
# select parameters corresponding to the currently considered timestep
|
347 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
348 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
349 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
350 |
+
sqrt_one_minus_at = torch.full(
|
351 |
+
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
352 |
+
)
|
353 |
+
|
354 |
+
# current prediction for x_0
|
355 |
+
if self.model.parameterization != "v":
|
356 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
357 |
+
else:
|
358 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
359 |
+
|
360 |
+
if quantize_denoised:
|
361 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
362 |
+
|
363 |
+
if dynamic_threshold is not None:
|
364 |
+
raise NotImplementedError()
|
365 |
+
|
366 |
+
# direction pointing to x_t
|
367 |
+
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
368 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
369 |
+
if noise_dropout > 0.0:
|
370 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
371 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
372 |
+
return x_prev, pred_x0
|
373 |
+
|
374 |
+
@torch.no_grad()
|
375 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
376 |
+
# fast, but does not allow for exact reconstruction
|
377 |
+
# t serves as an index to gather the correct alphas
|
378 |
+
if use_original_steps:
|
379 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
380 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
381 |
+
else:
|
382 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
383 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
384 |
+
|
385 |
+
if noise is None:
|
386 |
+
noise = torch.randn_like(x0)
|
387 |
+
return (
|
388 |
+
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
389 |
+
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
390 |
+
)
|
391 |
+
|
392 |
+
@torch.no_grad()
|
393 |
+
def decode(
|
394 |
+
self,
|
395 |
+
x_latent,
|
396 |
+
cond,
|
397 |
+
t_start,
|
398 |
+
unconditional_guidance_scale=1.0,
|
399 |
+
unconditional_conditioning=None,
|
400 |
+
use_original_steps=False,
|
401 |
+
**kwargs,
|
402 |
+
):
|
403 |
+
timesteps = (
|
404 |
+
np.arange(self.ddpm_num_timesteps)
|
405 |
+
if use_original_steps
|
406 |
+
else self.ddim_timesteps
|
407 |
+
)
|
408 |
+
timesteps = timesteps[:t_start]
|
409 |
+
|
410 |
+
time_range = np.flip(timesteps)
|
411 |
+
total_steps = timesteps.shape[0]
|
412 |
+
|
413 |
+
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
414 |
+
x_dec = x_latent
|
415 |
+
for i, step in enumerate(iterator):
|
416 |
+
index = total_steps - i - 1
|
417 |
+
ts = torch.full(
|
418 |
+
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
419 |
+
)
|
420 |
+
x_dec, _ = self.p_sample_ddim(
|
421 |
+
x_dec,
|
422 |
+
cond,
|
423 |
+
ts,
|
424 |
+
index=index,
|
425 |
+
use_original_steps=use_original_steps,
|
426 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
427 |
+
unconditional_conditioning=unconditional_conditioning,
|
428 |
+
**kwargs,
|
429 |
+
)
|
430 |
+
return x_dec
|
apps/third_party/CRM/imagedream/ldm/modules/__init__.py
ADDED
File without changes
|
apps/third_party/CRM/imagedream/ldm/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/modules/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (183 Bytes). View file
|
|
apps/third_party/CRM/imagedream/ldm/modules/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/modules/__pycache__/attention.cpython-38.pyc
ADDED
Binary file (11.7 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/modules/__pycache__/ema.cpython-310.pyc
ADDED
Binary file (3.24 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/modules/__pycache__/ema.cpython-38.pyc
ADDED
Binary file (3.23 kB). View file
|
|
apps/third_party/CRM/imagedream/ldm/modules/attention.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from .diffusionmodules.util import checkpoint
|
10 |
+
|
11 |
+
|
12 |
+
try:
|
13 |
+
import xformers
|
14 |
+
import xformers.ops
|
15 |
+
|
16 |
+
XFORMERS_IS_AVAILBLE = True
|
17 |
+
except:
|
18 |
+
XFORMERS_IS_AVAILBLE = False
|
19 |
+
|
20 |
+
# CrossAttn precision handling
|
21 |
+
import os
|
22 |
+
|
23 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
24 |
+
|
25 |
+
|
26 |
+
def exists(val):
|
27 |
+
return val is not None
|
28 |
+
|
29 |
+
|
30 |
+
def uniq(arr):
|
31 |
+
return {el: True for el in arr}.keys()
|
32 |
+
|
33 |
+
|
34 |
+
def default(val, d):
|
35 |
+
if exists(val):
|
36 |
+
return val
|
37 |
+
return d() if isfunction(d) else d
|
38 |
+
|
39 |
+
|
40 |
+
def max_neg_value(t):
|
41 |
+
return -torch.finfo(t.dtype).max
|
42 |
+
|
43 |
+
|
44 |
+
def init_(tensor):
|
45 |
+
dim = tensor.shape[-1]
|
46 |
+
std = 1 / math.sqrt(dim)
|
47 |
+
tensor.uniform_(-std, std)
|
48 |
+
return tensor
|
49 |
+
|
50 |
+
|
51 |
+
# feedforward
|
52 |
+
class GEGLU(nn.Module):
|
53 |
+
def __init__(self, dim_in, dim_out):
|
54 |
+
super().__init__()
|
55 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
59 |
+
return x * F.gelu(gate)
|
60 |
+
|
61 |
+
|
62 |
+
class FeedForward(nn.Module):
|
63 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
64 |
+
super().__init__()
|
65 |
+
inner_dim = int(dim * mult)
|
66 |
+
dim_out = default(dim_out, dim)
|
67 |
+
project_in = (
|
68 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
69 |
+
if not glu
|
70 |
+
else GEGLU(dim, inner_dim)
|
71 |
+
)
|
72 |
+
|
73 |
+
self.net = nn.Sequential(
|
74 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
return self.net(x)
|
79 |
+
|
80 |
+
|
81 |
+
def zero_module(module):
|
82 |
+
"""
|
83 |
+
Zero out the parameters of a module and return it.
|
84 |
+
"""
|
85 |
+
for p in module.parameters():
|
86 |
+
p.detach().zero_()
|
87 |
+
return module
|
88 |
+
|
89 |
+
|
90 |
+
def Normalize(in_channels):
|
91 |
+
return torch.nn.GroupNorm(
|
92 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
class SpatialSelfAttention(nn.Module):
|
97 |
+
def __init__(self, in_channels):
|
98 |
+
super().__init__()
|
99 |
+
self.in_channels = in_channels
|
100 |
+
|
101 |
+
self.norm = Normalize(in_channels)
|
102 |
+
self.q = torch.nn.Conv2d(
|
103 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
104 |
+
)
|
105 |
+
self.k = torch.nn.Conv2d(
|
106 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
107 |
+
)
|
108 |
+
self.v = torch.nn.Conv2d(
|
109 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
110 |
+
)
|
111 |
+
self.proj_out = torch.nn.Conv2d(
|
112 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
113 |
+
)
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
h_ = x
|
117 |
+
h_ = self.norm(h_)
|
118 |
+
q = self.q(h_)
|
119 |
+
k = self.k(h_)
|
120 |
+
v = self.v(h_)
|
121 |
+
|
122 |
+
# compute attention
|
123 |
+
b, c, h, w = q.shape
|
124 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
125 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
126 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
127 |
+
|
128 |
+
w_ = w_ * (int(c) ** (-0.5))
|
129 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
130 |
+
|
131 |
+
# attend to values
|
132 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
133 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
134 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
135 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
136 |
+
h_ = self.proj_out(h_)
|
137 |
+
|
138 |
+
return x + h_
|
139 |
+
|
140 |
+
|
141 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
142 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
143 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs):
|
144 |
+
super().__init__()
|
145 |
+
print(
|
146 |
+
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
147 |
+
f"{heads} heads."
|
148 |
+
)
|
149 |
+
inner_dim = dim_head * heads
|
150 |
+
context_dim = default(context_dim, query_dim)
|
151 |
+
|
152 |
+
self.heads = heads
|
153 |
+
self.dim_head = dim_head
|
154 |
+
|
155 |
+
self.with_ip = kwargs.get("with_ip", False)
|
156 |
+
if self.with_ip and (context_dim is not None):
|
157 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
158 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
159 |
+
self.ip_dim= kwargs.get("ip_dim", 16)
|
160 |
+
self.ip_weight = kwargs.get("ip_weight", 1.0)
|
161 |
+
|
162 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
163 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
+
|
166 |
+
self.to_out = nn.Sequential(
|
167 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
self.attention_op = None
|
170 |
+
|
171 |
+
def forward(self, x, context=None, mask=None):
|
172 |
+
q = self.to_q(x)
|
173 |
+
|
174 |
+
has_ip = self.with_ip and (context is not None)
|
175 |
+
if has_ip:
|
176 |
+
# context dim [(b frame_num), (77 + img_token), 1024]
|
177 |
+
token_len = context.shape[1]
|
178 |
+
context_ip = context[:, -self.ip_dim:, :]
|
179 |
+
k_ip = self.to_k_ip(context_ip)
|
180 |
+
v_ip = self.to_v_ip(context_ip)
|
181 |
+
context = context[:, :(token_len - self.ip_dim), :]
|
182 |
+
|
183 |
+
context = default(context, x)
|
184 |
+
k = self.to_k(context)
|
185 |
+
v = self.to_v(context)
|
186 |
+
|
187 |
+
b, _, _ = q.shape
|
188 |
+
q, k, v = map(
|
189 |
+
lambda t: t.unsqueeze(3)
|
190 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
191 |
+
.permute(0, 2, 1, 3)
|
192 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
193 |
+
.contiguous(),
|
194 |
+
(q, k, v),
|
195 |
+
)
|
196 |
+
|
197 |
+
# actually compute the attention, what we cannot get enough of
|
198 |
+
out = xformers.ops.memory_efficient_attention(
|
199 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
200 |
+
)
|
201 |
+
|
202 |
+
if has_ip:
|
203 |
+
k_ip, v_ip = map(
|
204 |
+
lambda t: t.unsqueeze(3)
|
205 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
206 |
+
.permute(0, 2, 1, 3)
|
207 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
208 |
+
.contiguous(),
|
209 |
+
(k_ip, v_ip),
|
210 |
+
)
|
211 |
+
# actually compute the attention, what we cannot get enough of
|
212 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
213 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
214 |
+
)
|
215 |
+
out = out + self.ip_weight * out_ip
|
216 |
+
|
217 |
+
if exists(mask):
|
218 |
+
raise NotImplementedError
|
219 |
+
out = (
|
220 |
+
out.unsqueeze(0)
|
221 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
222 |
+
.permute(0, 2, 1, 3)
|
223 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
224 |
+
)
|
225 |
+
return self.to_out(out)
|
226 |
+
|
227 |
+
|
228 |
+
class BasicTransformerBlock(nn.Module):
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dim,
|
232 |
+
n_heads,
|
233 |
+
d_head,
|
234 |
+
dropout=0.0,
|
235 |
+
context_dim=None,
|
236 |
+
gated_ff=True,
|
237 |
+
checkpoint=True,
|
238 |
+
disable_self_attn=False,
|
239 |
+
**kwargs
|
240 |
+
):
|
241 |
+
super().__init__()
|
242 |
+
assert XFORMERS_IS_AVAILBLE, "xformers is not available"
|
243 |
+
attn_cls = MemoryEfficientCrossAttention
|
244 |
+
self.disable_self_attn = disable_self_attn
|
245 |
+
self.attn1 = attn_cls(
|
246 |
+
query_dim=dim,
|
247 |
+
heads=n_heads,
|
248 |
+
dim_head=d_head,
|
249 |
+
dropout=dropout,
|
250 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
251 |
+
) # is a self-attention if not self.disable_self_attn
|
252 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
+
self.attn2 = attn_cls(
|
254 |
+
query_dim=dim,
|
255 |
+
context_dim=context_dim,
|
256 |
+
heads=n_heads,
|
257 |
+
dim_head=d_head,
|
258 |
+
dropout=dropout,
|
259 |
+
**kwargs
|
260 |
+
) # is self-attn if context is none
|
261 |
+
self.norm1 = nn.LayerNorm(dim)
|
262 |
+
self.norm2 = nn.LayerNorm(dim)
|
263 |
+
self.norm3 = nn.LayerNorm(dim)
|
264 |
+
self.checkpoint = checkpoint
|
265 |
+
|
266 |
+
def forward(self, x, context=None):
|
267 |
+
return checkpoint(
|
268 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
269 |
+
)
|
270 |
+
|
271 |
+
def _forward(self, x, context=None):
|
272 |
+
x = (
|
273 |
+
self.attn1(
|
274 |
+
self.norm1(x), context=context if self.disable_self_attn else None
|
275 |
+
)
|
276 |
+
+ x
|
277 |
+
)
|
278 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
279 |
+
x = self.ff(self.norm3(x)) + x
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
class SpatialTransformer(nn.Module):
|
284 |
+
"""
|
285 |
+
Transformer block for image-like data.
|
286 |
+
First, project the input (aka embedding)
|
287 |
+
and reshape to b, t, d.
|
288 |
+
Then apply standard transformer action.
|
289 |
+
Finally, reshape to image
|
290 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
291 |
+
"""
|
292 |
+
|
293 |
+
def __init__(
|
294 |
+
self,
|
295 |
+
in_channels,
|
296 |
+
n_heads,
|
297 |
+
d_head,
|
298 |
+
depth=1,
|
299 |
+
dropout=0.0,
|
300 |
+
context_dim=None,
|
301 |
+
disable_self_attn=False,
|
302 |
+
use_linear=False,
|
303 |
+
use_checkpoint=True,
|
304 |
+
**kwargs
|
305 |
+
):
|
306 |
+
super().__init__()
|
307 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
308 |
+
context_dim = [context_dim]
|
309 |
+
self.in_channels = in_channels
|
310 |
+
inner_dim = n_heads * d_head
|
311 |
+
self.norm = Normalize(in_channels)
|
312 |
+
if not use_linear:
|
313 |
+
self.proj_in = nn.Conv2d(
|
314 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
318 |
+
|
319 |
+
self.transformer_blocks = nn.ModuleList(
|
320 |
+
[
|
321 |
+
BasicTransformerBlock(
|
322 |
+
inner_dim,
|
323 |
+
n_heads,
|
324 |
+
d_head,
|
325 |
+
dropout=dropout,
|
326 |
+
context_dim=context_dim[d],
|
327 |
+
disable_self_attn=disable_self_attn,
|
328 |
+
checkpoint=use_checkpoint,
|
329 |
+
**kwargs
|
330 |
+
)
|
331 |
+
for d in range(depth)
|
332 |
+
]
|
333 |
+
)
|
334 |
+
if not use_linear:
|
335 |
+
self.proj_out = zero_module(
|
336 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
340 |
+
self.use_linear = use_linear
|
341 |
+
|
342 |
+
def forward(self, x, context=None):
|
343 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
344 |
+
if not isinstance(context, list):
|
345 |
+
context = [context]
|
346 |
+
b, c, h, w = x.shape
|
347 |
+
x_in = x
|
348 |
+
x = self.norm(x)
|
349 |
+
if not self.use_linear:
|
350 |
+
x = self.proj_in(x)
|
351 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
352 |
+
if self.use_linear:
|
353 |
+
x = self.proj_in(x)
|
354 |
+
for i, block in enumerate(self.transformer_blocks):
|
355 |
+
x = block(x, context=context[i])
|
356 |
+
if self.use_linear:
|
357 |
+
x = self.proj_out(x)
|
358 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
359 |
+
if not self.use_linear:
|
360 |
+
x = self.proj_out(x)
|
361 |
+
return x + x_in
|
362 |
+
|
363 |
+
|
364 |
+
class BasicTransformerBlock3D(BasicTransformerBlock):
|
365 |
+
def forward(self, x, context=None, num_frames=1):
|
366 |
+
return checkpoint(
|
367 |
+
self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
|
368 |
+
)
|
369 |
+
|
370 |
+
def _forward(self, x, context=None, num_frames=1):
|
371 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
372 |
+
x = (
|
373 |
+
self.attn1(
|
374 |
+
self.norm1(x),
|
375 |
+
context=context if self.disable_self_attn else None
|
376 |
+
)
|
377 |
+
+ x
|
378 |
+
)
|
379 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
380 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
381 |
+
x = self.ff(self.norm3(x)) + x
|
382 |
+
return x
|
383 |
+
|
384 |
+
|
385 |
+
class SpatialTransformer3D(nn.Module):
|
386 |
+
"""3D self-attention"""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
in_channels,
|
391 |
+
n_heads,
|
392 |
+
d_head,
|
393 |
+
depth=1,
|
394 |
+
dropout=0.0,
|
395 |
+
context_dim=None,
|
396 |
+
disable_self_attn=False,
|
397 |
+
use_linear=False,
|
398 |
+
use_checkpoint=True,
|
399 |
+
**kwargs
|
400 |
+
):
|
401 |
+
super().__init__()
|
402 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
403 |
+
context_dim = [context_dim]
|
404 |
+
self.in_channels = in_channels
|
405 |
+
inner_dim = n_heads * d_head
|
406 |
+
self.norm = Normalize(in_channels)
|
407 |
+
if not use_linear:
|
408 |
+
self.proj_in = nn.Conv2d(
|
409 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
413 |
+
|
414 |
+
self.transformer_blocks = nn.ModuleList(
|
415 |
+
[
|
416 |
+
BasicTransformerBlock3D(
|
417 |
+
inner_dim,
|
418 |
+
n_heads,
|
419 |
+
d_head,
|
420 |
+
dropout=dropout,
|
421 |
+
context_dim=context_dim[d],
|
422 |
+
disable_self_attn=disable_self_attn,
|
423 |
+
checkpoint=use_checkpoint,
|
424 |
+
**kwargs
|
425 |
+
)
|
426 |
+
for d in range(depth)
|
427 |
+
]
|
428 |
+
)
|
429 |
+
if not use_linear:
|
430 |
+
self.proj_out = zero_module(
|
431 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
435 |
+
self.use_linear = use_linear
|
436 |
+
|
437 |
+
def forward(self, x, context=None, num_frames=1):
|
438 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
439 |
+
if not isinstance(context, list):
|
440 |
+
context = [context]
|
441 |
+
b, c, h, w = x.shape
|
442 |
+
x_in = x
|
443 |
+
x = self.norm(x)
|
444 |
+
if not self.use_linear:
|
445 |
+
x = self.proj_in(x)
|
446 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
447 |
+
if self.use_linear:
|
448 |
+
x = self.proj_in(x)
|
449 |
+
for i, block in enumerate(self.transformer_blocks):
|
450 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
451 |
+
if self.use_linear:
|
452 |
+
x = self.proj_out(x)
|
453 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
454 |
+
if not self.use_linear:
|
455 |
+
x = self.proj_out(x)
|
456 |
+
return x + x_in
|
apps/third_party/CRM/imagedream/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
apps/third_party/CRM/imagedream/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (203 Bytes). View file
|
|