import spaces import argparse import os import json import torch import sys import time import importlib import numpy as np from omegaconf import OmegaConf from huggingface_hub import hf_hub_download from collections import OrderedDict import trimesh import gradio as gr from typing import Any from einops import rearrange proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.join(proj_dir)) import tempfile from apps.utils import * _TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' _DESCRIPTION = '''
Important: The ckpt models released have been primarily trained on character data, hence they are likely to exhibit superior performance in this category. We are also planning to release more advanced pretrained models in the future.
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka 匠心) which uses 3D Latent Set Diffusion Model that directly generates coarse meshes, then a multi-view normal enhanced image generation model is used to refine the mesh. We provide the coarse 3D diffusion part here.
If you found CraftsMan is helpful, please help to ⭐ the Github Repo. Thanks!
*If you have your own multi-view images, you can directly upload it.
''' _CITE_ = r""" --- 📝 **Citation** If you find our work useful for your research or applications, please cite using this bibtex: ```bibtex @article{li2024craftsman, author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, journal = {arXiv preprint arXiv:2405.14979}, year = {2024}, } ``` 🤗 **Acknowledgements** We use Instant Meshes to remesh the generated mesh to a lower face count, thanks to the authors for the great work. 📋 **License** CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. 📧 **Contact** If you have any questions, feel free to open a discussion or contact us at weiyuli.cn@gmail.com. """ from apps.third_party.CRM.pipelines import TwoStagePipeline from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline from apps.third_party.Era3D.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline from apps.third_party.Era3D.data.single_image_dataset import SingleImageDataset import re import os import stat RD, WD, XD = 4, 2, 1 BNS = [RD, WD, XD] MDS = [ [stat.S_IRUSR, stat.S_IRGRP, stat.S_IROTH], [stat.S_IWUSR, stat.S_IWGRP, stat.S_IWOTH], [stat.S_IXUSR, stat.S_IXGRP, stat.S_IXOTH] ] def chmod(path, mode): if isinstance(mode, int): mode = str(mode) if not re.match("^[0-7]{1,3}$", mode): raise Exception("mode does not conform to ^[0-7]{1,3}$ pattern") mode = "{0:0>3}".format(mode) mode_num = 0 for midx, m in enumerate(mode): for bnidx, bn in enumerate(BNS): if (int(m) & bn) > 0: mode_num += MDS[bnidx][midx] os.chmod(path, mode_num) chmod(f"{parent_dir}/apps/third_party/InstantMeshes", "777") device = None model = None cached_dir = None generator = None sys.path.append(f"apps/third_party/CRM") crm_pipeline = None sys.path.append(f"apps/third_party/LGM") imgaedream_pipeline = None sys.path.append(f"apps/third_party/Era3D") era3d_pipeline = None @spaces.GPU(duration=120) def gen_mvimg( mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation, backgroud_color ): global device if seed == 0: seed = np.random.randint(1, 65535) global generator generator = torch.Generator(device) generator.manual_seed(seed) if mvimg_model == "CRM": global crm_pipeline crm_pipeline.set_seed(seed) background = Image.new("RGBA", image.size, (127, 127, 127)) image = Image.alpha_composite(background, image) mv_imgs = crm_pipeline( image, scale=guidance_scale, step=step )["stage1_images"] return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0] elif mvimg_model == "ImageDream": global imagedream_pipeline background = Image.new("RGBA", image.size, backgroud_color) image = Image.alpha_composite(background, image) image = np.array(image).astype(np.float32) / 255.0 image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) mv_imgs = imagedream_pipeline( text, image, negative_prompt=neg_text, guidance_scale=guidance_scale, num_inference_steps=step, elevation=elevation, generator=generator, ) return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0] elif mvimg_model == "Era3D": global era3d_pipeline era3d_pipeline.to(device) era3d_pipeline.unet.enable_xformers_memory_efficient_attention() era3d_pipeline.set_progress_bar_config(disable=True) crop_size = 420 batch = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', crop_size=crop_size, single_image=image, prompt_embeds_path='apps/third_party/Era3D/data/fixed_prompt_embeds_6view')[0] imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W) normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") imgs_in = imgs_in.to(dtype=torch.float16) prompt_embeddings = prompt_embeddings.to(dtype=torch.float16) mv_imgs = era3d_pipeline( imgs_in, None, prompt_embeds=prompt_embeddings, generator=generator, guidance_scale=guidance_scale, num_inference_steps=step, num_images_per_prompt=1, **{'eta': 1.0} ).images return mv_imgs[6], mv_imgs[8], mv_imgs[9], mv_imgs[10] @spaces.GPU def image2mesh(view_front: np.ndarray, view_right: np.ndarray, view_back: np.ndarray, view_left: np.ndarray, more: bool = False, scheluder_name: str ="DDIMScheduler", guidance_scale: int = 7.5, steps: int = 50, seed: int = 4, octree_depth: int = 7): sample_inputs = { "mvimages": [[ Image.fromarray(view_front), Image.fromarray(view_right), Image.fromarray(view_back), Image.fromarray(view_left) ]] } global model latents = model.sample( sample_inputs, sample_times=1, guidance_scale=guidance_scale, return_intermediates=False, steps=steps, seed=seed )[0] # decode the latents to mesh box_v = 1.1 mesh_outputs, _ = model.shape_model.extract_geometry( latents, bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], octree_depth=octree_depth ) assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) # filepath = f"{cached_dir}/{time.time()}.obj" filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name mesh.export(filepath, include_normals=True) if 'Remesh' in more: remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name print("Remeshing with Instant Meshes...") # target_face_count = int(len(mesh.faces)/10) target_face_count = 2000 command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" os.system(command) filepath = remeshed_filepath # filepath = filepath.replace('.obj', '_remeshed.obj') return filepath if __name__=="__main__": parser = argparse.ArgumentParser() # parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",) parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir") parser.add_argument("--device", type=int, default=0) args = parser.parse_args() cached_dir = args.cached_dir os.makedirs(args.cached_dir, exist_ok=True) device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") print(f"using device: {device}") # for multi-view images generation background_choice = OrderedDict({ "Alpha as Mask": "Alpha as Mask", "Auto Remove Background": "Auto Remove Background", "Original Image": "Original Image", }) mvimg_model_config_list = [ "Era3D", "CRM", "ImageDream" ] if "Era3D" in mvimg_model_config_list: # cfg = load_config("apps/third_party/Era3D/configs/test_unclip-512-6view.yaml") # schema = OmegaConf.structured(TestConfig) # cfg = OmegaConf.merge(schema, cfg) era3d_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( 'pengHTYX/MacLab-Era3D-512-6view', dtype=torch.float16, ) # enable xformers # era3d_pipeline.unet.enable_xformers_memory_efficient_attention() # era3d_pipeline.to(device) if "CRM" in mvimg_model_config_list: stage1_config = OmegaConf.load(f"apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config stage1_sampler_config = stage1_config.sampler stage1_model_config = stage1_config.models stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model") stage1_model_config.config = f"apps/third_party/CRM/" + stage1_model_config.config crm_pipeline = TwoStagePipeline( stage1_model_config, stage1_sampler_config, device=device, dtype=torch.float16 ) if "ImageDream" in mvimg_model_config_list: imagedream_pipeline = MVDreamPipeline.from_pretrained( "ashawkey/imagedream-ipmv-diffusers", # remote weights torch_dtype=torch.float16, trust_remote_code=True, ) # for 3D latent set diffusion ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/model.ckpt", repo_type="model") config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/config.yaml", repo_type="model") # ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model-300k.ckpt", repo_type="model") # config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model") scheluder_dict = OrderedDict({ "DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', # "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet # "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet }) # main GUI custom_theme = gr.themes.Soft(primary_hue="blue").set( button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200") custom_css = '''#disp_image { text-align: center; /* Horizontally center the content */ }''' with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(): with gr.Column(scale=2): with gr.Column(): # input image with gr.Row(): image_input = gr.Image( label="Image Input", image_mode="RGBA", sources="upload", type="pil", ) run_btn = gr.Button('Generate', variant='primary', interactive=True) with gr.Row(): gr.Markdown('''Try a different seed and MV Model for better results. Good Luck :)''') with gr.Row(): seed = gr.Number(0, label='Seed', show_label=True) mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list)) more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False) with gr.Row(): # input prompt text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream") with gr.Accordion('Advanced options', open=False): # negative prompt neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate') # elevation elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0) with gr.Row(): gr.Examples( examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")], inputs=[image_input], examples_per_page=8 ) with gr.Column(scale=4): with gr.Row(): output_model_obj = gr.Model3D( label="Output Model (OBJ Format)", camera_position=(90.0, 90.0, 3.5), interactive=False, ) with gr.Row(): gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''') with gr.Row(): view_front = gr.Image(label="Front", interactive=True, show_label=True) view_right = gr.Image(label="Right", interactive=True, show_label=True) view_back = gr.Image(label="Back", interactive=True, show_label=True) view_left = gr.Image(label="Left", interactive=True, show_label=True) with gr.Accordion('Advanced options', open=False): with gr.Row(equal_height=True): run_mv_btn = gr.Button('Only Generate 2D', interactive=True) run_3d_btn = gr.Button('Only Generate 3D', interactive=True) with gr.Accordion('Advanced options (2D)', open=False): with gr.Row(): foreground_ratio = gr.Slider( label="Foreground Ratio", minimum=0.5, maximum=1.0, value=1.0, step=0.05, ) with gr.Row(): background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True) # backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True) with gr.Row(): mvimg_guidance_scale = gr.Number(value=3.0, minimum=1, maximum=10, label="2D Guidance Scale") mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps") with gr.Accordion('Advanced options (3D)', open=False): with gr.Row(): guidance_scale = gr.Number(label="3D Guidance Scale", value=3.0, minimum=1.0, maximum=10.0) steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") with gr.Row(): scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) gr.Markdown(_CITE_) outputs = [output_model_obj] rmbg = RMBG(device) model = load_model(ckpt_path, config_path, device) run_btn.click(fn=check_input_image, inputs=[image_input] ).success( fn=rmbg.run, inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color], outputs=[image_input] ).success( fn=gen_mvimg, inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color], outputs=[view_front, view_right, view_back, view_left] ).success( fn=image2mesh, inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth], outputs=outputs, api_name="generate_img2obj") run_mv_btn.click(fn=gen_mvimg, inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color], outputs=[view_front, view_right, view_back, view_left] ) run_3d_btn.click(fn=image2mesh, inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth], outputs=outputs, api_name="generate_img2obj") demo.queue().launch(share=True, allowed_paths=[args.cached_dir])