Spaces:
Runtime error
Runtime error
File size: 2,112 Bytes
24910f2 a4c8bb5 24910f2 e3dc417 b17bb63 24910f2 a4c8bb5 24910f2 b17bb63 24910f2 b17bb63 4378f9c 24910f2 a4c8bb5 2b1278f b17bb63 4378f9c b942514 24910f2 59bd0c5 24910f2 a4c8bb5 bd1243e b17bb63 bd1243e 24910f2 59bd0c5 b17bb63 a4c8bb5 b17bb63 24910f2 59bd0c5 b17bb63 24910f2 e06d371 59bd0c5 b17bb63 24910f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
"""
building-segmentation
Proof of concept showing effectiveness of a fine tuned instance segmentation model for deteting buildings.
"""
import os
import cv2
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision
import detectron2
# import some common detectron2 utilities
import itertools
import seaborn as sns
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.checkpoint import DetectionCheckpointer
cfg = get_cfg()
cfg.merge_from_file("model_weights/buildings_poc_cfg.yml")
cfg.MODEL.DEVICE='cpu'
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.WEIGHTS = "model_weights/chatswood_buildings_poc.pth"
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
predictor = DefaultPredictor(cfg)
def segment_buildings(im):
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
out_im = out.get_image()[:, :, ::-1]
return out_im
# gradio components
"""
gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7,
label='Set confidence threshold % for masks')
"""
# gradio outputs
inputs = gr.inputs.Image(type="pil", label="Input Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")
title = "Building Segmentation"
description = "An instance segmentation demo for identifying boundaries of buildings in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
# Create user interface and launch
gr.Interface(segment_buildings,
inputs = inputs,
outputs = outputs,
title = title,
enable_queue = True,
description = description).launch()
|