Spaces:
Runtime error
Runtime error
""" | |
building-segmentation | |
Proof of concept showing effectiveness of a fine tuned instance segmentation model for deteting buildings. | |
""" | |
import os | |
import cv2 | |
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
from transformers import DetrFeatureExtractor, DetrForSegmentation | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchvision | |
import detectron2 | |
# import some common detectron2 utilities | |
import itertools | |
import seaborn as sns | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
cfg = get_cfg() | |
cfg.MODEL.DEVICE='cpu' | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | |
cfg.MODEL.WEIGHTS = "model_weights/chatswood_buildings_poc.pth" | |
def segment_buildings(input_image): | |
im = cv2.imread(input_image.name) | |
outputs = predictor(im) | |
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return Image.fromarray(np.uint8(out.get_image())).convert('RGB') | |
# gradio components -inputs | |
gr_image_input = gr.inputs.Image(type="file") | |
""" | |
gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7, | |
label='Set confidence threshold % for masks') | |
""" | |
# gradio outputs | |
gr_image_output = gr.outputs.Image(type="pil") | |
title = "Building Segmentation" | |
description = "An instance segmentation demo for identifying boundaries of buildings in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone" | |
# Create user interface and launch | |
gr.Interface(predict_building_mask, | |
inputs = gr_image_input, | |
outputs = gr_image_output, | |
title = title, | |
enable_queue = True, | |
description = description).launch() | |