File size: 7,112 Bytes
598d165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de577c9
 
 
598d165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07ba8d
598d165
 
 
 
 
 
 
411aed8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import shutil
import subprocess

import torch
import gradio as gr
from fastapi import FastAPI
import os
from PIL import Image
import tempfile
from decord import VideoReader, cpu
from transformers import TextStreamer
import argparse

import sys
from llava.constants import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle, Conversation
from llava.mm_utils import process_images

from infer_utils import load_video_into_frames
from utils import load_image, image_ext, video_ext
from gradio_utils import Chat, tos_markdown, learn_more_markdown, title_markdown, block_css



def save_image_to_local(image):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
    image = Image.open(image)
    image.save(filename)
    return filename


def save_video_to_local(video_path):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
    shutil.copyfile(video_path, filename)
    return filename


def generate(video, textbox_in, first_run, state, state_, images_tensor, num_frames=50):
    flag = 1
    if not textbox_in:
        if len(state_.messages) > 0:
            textbox_in = state_.messages[-1][1]
            state_.messages.pop(-1)
            flag = 0
        else:
            return "Please enter instruction"

    video = video if video else "none"

    if type(state) is not Conversation:
        state = conv_templates[conv_mode].copy()
        state_ = conv_templates[conv_mode].copy()
        images_tensor = []

    first_run = False if len(state.messages) > 0 else True

    text_en_in = textbox_in.replace("picture", "image")

    image_processor = handler.image_processor
    assert os.path.exists(video)
    if os.path.splitext(video)[-1].lower() in video_ext: # video extension
        video_decode_backend = 'opencv'
    elif os.path.splitext(os.listdir(video)[0]).lower() in image_ext: # frames folder
        video_decode_backend = 'frames'
    else:
        raise ValueError(f'Support video of {video_ext} and frames of {image_ext}, but found {os.path.splitext(video)[-1].lower()}')

    frames = load_video_into_frames(video, video_decode_backend=video_decode_backend, num_frames=num_frames)
    tensor = process_images(frames, image_processor, argparse.Namespace(image_aspect_ratio='pad'))
    tensor = tensor.to(handler.model.device, dtype=dtype)
    images_tensor = tensor

    if handler.model.config.mm_use_im_start_end:
        text_en_in = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + text_en_in
    else:
        text_en_in = DEFAULT_IMAGE_TOKEN + '\n' + text_en_in
    text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
    state_.messages[-1] = (state_.roles[1], text_en_out)

    text_en_out = text_en_out.split('#')[0]
    textbox_out = text_en_out

    show_images = ""
    if os.path.exists(video):
        filename = save_video_to_local(video)
        show_images += f'<video controls playsinline width="500" style="display: inline-block;"  src="./file={filename}"></video>'
    if flag:
        state.append_message(state.roles[0], textbox_in + "\n" + show_images)
    state.append_message(state.roles[1], textbox_out)

    return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, \
        gr.update(value=video if os.path.exists(video) else None, interactive=True))


def regenerate(state, state_):
    state.messages.pop(-1)
    state_.messages.pop(-1)
    if len(state.messages) > 0:
        return state, state_, state.to_gradio_chatbot(), False
    return (state, state_, state.to_gradio_chatbot(), True)


def clear_history(state, state_):
    state = conv_templates[conv_mode].copy()
    state_ = conv_templates[conv_mode].copy()
    return (gr.update(value=None, interactive=True),
            gr.update(value=None, interactive=True), \
            gr.update(value=None, interactive=True), \
            True, state, state_, state.to_gradio_chatbot(), [])


# ==== CHANGE HERE ====
conv_mode = "llava_v0"
model_path = 'SNUMPR/vlm_rlaif_video_llava_7b'
cache_dir = './cache_dir'
device = 'cuda'
load_8bit = True
load_4bit = False
dtype = torch.float16
# =============

handler = Chat(model_path, conv_mode=conv_mode, load_8bit=load_8bit, load_4bit=load_8bit, device=device, cache_dir=cache_dir)
if not os.path.exists("temp"):
    os.makedirs("temp")

app = FastAPI()


textbox = gr.Textbox(
    show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title='VLM-RLAIF', theme=gr.themes.Default(), css=block_css) as demo:
    gr.Markdown(title_markdown)
    state = gr.State()
    state_ = gr.State()
    first_run = gr.State()
    images_tensor = gr.State()

    with gr.Row():
        with gr.Column(scale=3):
            video = gr.Video(label="Input Video")

            cur_dir = os.path.dirname(os.path.abspath(__file__))
            gr.Examples(
                examples=[
                    [
                        f"{cur_dir}/examples/sample_demo_1.mp4",
                        "Why is this video funny?",
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_3.mp4",
                        "Can you identify any safety hazards in this video?"
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_9.mp4",
                        "Describe the video.",
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_22.mp4",
                        "Describe the activity in the video.",
                    ],
                ],
                inputs=[video, textbox],
            )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="VLM_RLAIF", bubble_full_width=True).style(height=750)
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(
                        value="Send", variant="primary", interactive=True
                    )
            with gr.Row(elem_id="buttons") as button_row:
                upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=True)
                downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=True)
                flag_btn = gr.Button(value="⚠️  Flag", interactive=True)
                regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=True)

    # gr.Markdown(tos_markdown)
    gr.Markdown(learn_more_markdown)

    submit_btn.click(generate, [video, textbox, first_run, state, state_, images_tensor],
                     [state, state_, chatbot, first_run, textbox, images_tensor, video])

    regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then(
        generate, [video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, video])
demo.launch()