|
import streamlit as st |
|
import pandas as pd |
|
import bisect |
|
from loading_file import precomputed_df |
|
|
|
|
|
|
|
|
|
|
|
def binary_search_nearest(df, target): |
|
""" |
|
Uses binary search to find the nearest application numbers in the DataFrame. |
|
|
|
Args: |
|
df: The DataFrame containing the application numbers. |
|
target: The target application number to search for. |
|
|
|
Returns: |
|
Two nearest application numbers (before and after the target). |
|
""" |
|
application_numbers = df["Application Number"].tolist() |
|
pos = bisect.bisect_left(application_numbers, target) |
|
|
|
before = application_numbers[pos - 1] if pos > 0 else None |
|
after = application_numbers[pos] if pos < len(application_numbers) else None |
|
|
|
return before, after |
|
|
|
|
|
|
|
|
|
|
|
def search_application(df): |
|
""" |
|
Handles the user input and searches for the application number in the DataFrame. |
|
|
|
Args: |
|
df: The DataFrame containing application numbers and decisions. |
|
""" |
|
user_input = st.text_input("Enter your Application Number (including IRL if applicable):") |
|
|
|
if user_input: |
|
|
|
if "irl" in user_input.lower(): |
|
try: |
|
application_number = int("".join(filter(str.isdigit, user_input.lower().split("irl")[-1]))) |
|
if len(str(application_number)) < 8: |
|
st.warning("Please enter a valid application number with at least 8 digits after IRL.") |
|
return |
|
except ValueError: |
|
st.error("Invalid input after IRL. Please enter only digits.") |
|
return |
|
else: |
|
if not user_input.isdigit() or len(user_input) < 8: |
|
st.warning("Please enter at least 8 digits for your VISA application number.") |
|
return |
|
elif len(user_input) > 8: |
|
st.warning("The application number cannot exceed 8 digits. Please correct your input.") |
|
return |
|
application_number = int(user_input) |
|
|
|
|
|
df["Application Number"] = df["Application Number"].astype(int) |
|
|
|
|
|
result = df[df["Application Number"] == application_number] |
|
|
|
if not result.empty: |
|
decision = result.iloc[0]["Decision"] |
|
if decision.lower() == "refused": |
|
st.error(f"Application Number: {application_number}\n\nDecision: **Refused**") |
|
elif decision.lower() == "approved": |
|
st.success(f"Application Number: {application_number}\n\nDecision: **Approved**") |
|
else: |
|
st.info(f"Application Number: {application_number}\n\nDecision: **{decision}**") |
|
else: |
|
st.warning(f"No record found for Application Number: {application_number}.") |
|
|
|
|
|
before, after = binary_search_nearest(df, application_number) |
|
|
|
nearest_records = pd.DataFrame({ |
|
"Nearest Application": ["Before", "After"], |
|
"Application Number": [before, after], |
|
"Decision": [ |
|
df[df["Application Number"] == before]["Decision"].values[0] if before else None, |
|
df[df["Application Number"] == after]["Decision"].values[0] if after else None |
|
], |
|
"Difference": [ |
|
application_number - before if before else None, |
|
after - application_number if after else None |
|
] |
|
}).dropna() |
|
|
|
if not nearest_records.empty: |
|
st.subheader("Nearest Application Numbers") |
|
st.table(nearest_records.reset_index(drop=True)) |
|
else: |
|
st.info("No nearest application numbers found.") |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
st.title("Visa Application Status Checker") |
|
|
|
if precomputed_df is not None: |
|
search_application(precomputed_df) |
|
else: |
|
st.error("Failed to fetch and process the visa decisions data.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|