Update loading_file.py
Browse files- loading_file.py +14 -8
loading_file.py
CHANGED
@@ -45,22 +45,28 @@ def fetch_data():
|
|
45 |
# Process the .ods file
|
46 |
ods_file = BytesIO(ods_response.content)
|
47 |
df = pd.read_excel(ods_file, engine="odf")
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
df.reset_index(drop=True, inplace=True)
|
50 |
|
51 |
-
#
|
52 |
-
print("Columns
|
53 |
|
54 |
-
#
|
55 |
-
if len(df.columns)
|
|
|
|
|
|
|
|
|
56 |
df.columns = ["Application Number", "Decision"]
|
57 |
else:
|
58 |
st.error("Insufficient data columns detected.")
|
59 |
return None
|
60 |
|
61 |
-
# Only keep relevant columns
|
62 |
-
df = df[["Application Number", "Decision"]]
|
63 |
-
|
64 |
df["Application Number"] = df["Application Number"].astype(str)
|
65 |
return df
|
66 |
|
|
|
45 |
# Process the .ods file
|
46 |
ods_file = BytesIO(ods_response.content)
|
47 |
df = pd.read_excel(ods_file, engine="odf")
|
48 |
+
|
49 |
+
# Print columns to inspect what they look like
|
50 |
+
print("Columns before cleaning:", df.columns.tolist()) # For debugging purposes
|
51 |
+
|
52 |
+
# Drop unnecessary columns
|
53 |
+
df.dropna(how="all", inplace=True) # Drop rows with all NaN values
|
54 |
df.reset_index(drop=True, inplace=True)
|
55 |
|
56 |
+
# Print columns after cleaning
|
57 |
+
print("Columns after cleaning:", df.columns.tolist()) # For debugging purposes
|
58 |
|
59 |
+
# If we have extra columns, drop them
|
60 |
+
if len(df.columns) > 2:
|
61 |
+
df = df.iloc[:, :2] # Keep only the first two columns
|
62 |
+
|
63 |
+
# Rename columns if they match the expected ones
|
64 |
+
if len(df.columns) == 2:
|
65 |
df.columns = ["Application Number", "Decision"]
|
66 |
else:
|
67 |
st.error("Insufficient data columns detected.")
|
68 |
return None
|
69 |
|
|
|
|
|
|
|
70 |
df["Application Number"] = df["Application Number"].astype(str)
|
71 |
return df
|
72 |
|