LLM_Chatbot / app.py
Kims12's picture
Update app.py
2c0bbf8 verified
import gradio as gr
from huggingface_hub import InferenceClient
import openai
import anthropic
import os
# 제거할 모델들을 MODELS 사전에서 제외
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Microsoft": "microsoft/Phi-3-mini-4k-instruct",
"Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Aya-23-35B": "CohereForAI/aya-23-35B",
"DeepSeek-V3": "deepseek/deepseek-chat"
}
# Cohere Command R+ 모델 ID 정의
COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024"
def get_client(model_name, hf_token):
"""
모델 이름에 맞춰 InferenceClient 생성.
hf_token을 UI에서 입력받은 값으로 사용하도록 변경.
"""
if not hf_token:
raise ValueError("HuggingFace API 토큰이 필요합니다.")
if model_name in MODELS:
model_id = MODELS[model_name]
elif model_name == "Cohere Command R+":
model_id = COHERE_MODEL
else:
raise ValueError("유효하지 않은 모델 이름입니다.")
return InferenceClient(model_id, token=hf_token)
def respond(
message,
chat_history,
model_name,
max_tokens,
temperature,
top_p,
system_message,
hf_token, # HF 토큰을 추가로 받음
):
try:
client = get_client(model_name, hf_token)
except ValueError as e:
chat_history.append((message, str(e)))
return chat_history
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
if model_name == "Cohere Command R+":
# Cohere Command R+ 모델을 위한 비스트리밍 처리
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response.choices[0].message.content
chat_history.append((message, assistant_message))
return chat_history
else:
# 다른 모델들을 위한 스트리밍 처리
stream = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
partial_message = ""
for response in stream:
if response.choices[0].delta.content is not None:
partial_message += response.choices[0].delta.content
if len(chat_history) > 0 and chat_history[-1][0] == message:
chat_history[-1] = (message, partial_message)
else:
chat_history.append((message, partial_message))
yield chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
yield chat_history
def cohere_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
hf_token, # HF 토큰 추가
):
model_name = "Cohere Command R+"
try:
client = get_client(model_name, hf_token)
except ValueError as e:
chat_history.append((message, str(e)))
return chat_history
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
if human:
messages.append({"role": "user", "content": human})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
# Cohere Command R+ 모델을 위한 비스트리밍 처리
response_full = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response_full.choices[0].message.content
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def chatgpt_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
openai_token, # openai 토큰 추가
):
"""
chatgpt용 응답. openai_token을 UI에서 입력받아 사용하도록 변경.
"""
if not openai_token:
chat_history.append((message, "OpenAI API 토큰이 필요합니다."))
return chat_history
openai.api_key = openai_token # UI에서 받은 토큰 사용
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini", # 또는 다른 모델 ID 사용
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response.choices[0].message['content']
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def claude_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
claude_token, # Claude 토큰 추가
):
"""
Claude용 응답. claude_token을 UI에서 입력받아 사용하도록 변경.
"""
if not claude_token:
chat_history.append((message, "Claude API 토큰이 필요합니다."))
return chat_history
try:
client = anthropic.Anthropic(api_key=claude_token)
# 메시지 생성
response = client.messages.create(
model="claude-3-haiku-20240307",
max_tokens=max_tokens,
temperature=temperature,
system=system_message,
messages=[
{
"role": "user",
"content": message
}
]
)
assistant_message = response.content[0].text
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def deepseek_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
deepseek_token, # DeepSeek 토큰 추가
):
"""
DeepSeek용 응답. deepseek_token을 UI에서 입력받아 사용하도록 변경.
"""
if not deepseek_token:
chat_history.append((message, "DeepSeek API 토큰이 필요합니다."))
return chat_history
openai.api_key = deepseek_token
openai.api_base = "https://api.deepseek.com/v1"
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
response = openai.ChatCompletion.create(
model="deepseek-chat",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response.choices[0].message['content']
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def clear_conversation():
return []
with gr.Blocks() as demo:
gr.Markdown("# Prompting AI Chatbot")
gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")
# --- 토큰 입력 UI 추가 ---
with gr.Row():
hf_token_box = gr.Textbox(
label="HuggingFace 토큰",
type="password",
placeholder="HuggingFace API 토큰을 입력하세요..."
)
openai_token_box = gr.Textbox(
label="OpenAI 토큰",
type="password",
placeholder="OpenAI API 토큰을 입력하세요..."
)
claude_token_box = gr.Textbox(
label="Claude 토큰",
type="password",
placeholder="Claude API 토큰을 입력하세요..."
)
deepseek_token_box = gr.Textbox(
label="DeepSeek 토큰",
type="password",
placeholder="DeepSeek API 토큰을 입력하세요..."
)
with gr.Tab("일반 모델"):
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(MODELS.keys()),
label="Language Model",
value="Zephyr 7B Beta"
)
max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
with gr.Column(scale=2):
chatbot = gr.Chatbot()
msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
submit_button = gr.Button("전송")
clear_button = gr.Button("대화 내역 지우기")
# respond 함수에 hf_token 인자를 전달하도록 수정
inputs_for_normal = [
msg,
chatbot,
model_name,
max_tokens,
temperature,
top_p,
system_message,
hf_token_box
]
msg.submit(respond, inputs_for_normal, chatbot)
submit_button.click(respond, inputs_for_normal, chatbot)
clear_button.click(clear_conversation, outputs=chatbot, queue=False)
with gr.Tab("Cohere Command R+"):
with gr.Row():
cohere_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
cohere_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max new tokens")
cohere_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
cohere_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
cohere_chatbot = gr.Chatbot(height=600)
cohere_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
cohere_submit_button = gr.Button("전송")
cohere_clear_button = gr.Button("대화 내역 지우기")
# cohere_respond 함수에 hf_token 인자를 전달하도록 수정
inputs_for_cohere = [
cohere_msg,
cohere_chatbot,
cohere_system_message,
cohere_max_tokens,
cohere_temperature,
cohere_top_p,
hf_token_box
]
cohere_msg.submit(cohere_respond, inputs_for_cohere, cohere_chatbot)
cohere_submit_button.click(cohere_respond, inputs_for_cohere, cohere_chatbot)
cohere_clear_button.click(clear_conversation, outputs=cohere_chatbot, queue=False)
with gr.Tab("ChatGPT"):
with gr.Row():
chatgpt_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 ChatGPT, OpenAI에서 개발한 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
chatgpt_max_tokens = gr.Slider(minimum=100, maximum=5000, value=2000, step=100, label="Max Tokens")
chatgpt_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
chatgpt_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
chatgpt_chatbot = gr.Chatbot(height=600)
chatgpt_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
chatgpt_submit_button = gr.Button("전송")
chatgpt_clear_button = gr.Button("대화 내역 지우기")
# chatgpt_respond 함수에 openai_token 인자를 전달하도록 수정
inputs_for_chatgpt = [
chatgpt_msg,
chatgpt_chatbot,
chatgpt_system_message,
chatgpt_max_tokens,
chatgpt_temperature,
chatgpt_top_p,
openai_token_box
]
chatgpt_msg.submit(chatgpt_respond, inputs_for_chatgpt, chatgpt_chatbot)
chatgpt_submit_button.click(chatgpt_respond, inputs_for_chatgpt, chatgpt_chatbot)
chatgpt_clear_button.click(clear_conversation, outputs=chatgpt_chatbot, queue=False)
with gr.Tab("Claude"):
with gr.Row():
claude_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 Anthropic에서 개발한 클로드이다.
최대한 정확하고 친절하게 답변하라.
""",
label="System Message",
lines=3
)
claude_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
claude_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
claude_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
claude_chatbot = gr.Chatbot(height=600)
claude_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
claude_submit_button = gr.Button("전송")
claude_clear_button = gr.Button("대화 내역 지우기")
# claude_respond 함수에 claude_token 인자를 전달하도록 수정
inputs_for_claude = [
claude_msg,
claude_chatbot,
claude_system_message,
claude_max_tokens,
claude_temperature,
claude_top_p,
claude_token_box
]
claude_msg.submit(claude_respond, inputs_for_claude, claude_chatbot)
claude_submit_button.click(claude_respond, inputs_for_claude, claude_chatbot)
claude_clear_button.click(clear_conversation, outputs=claude_chatbot, queue=False)
with gr.Tab("DeepSeek"):
with gr.Row():
deepseek_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 DeepSeek-V3, 최고의 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
deepseek_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
deepseek_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
deepseek_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
deepseek_chatbot = gr.Chatbot(height=600)
deepseek_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
deepseek_submit_button = gr.Button("전송")
deepseek_clear_button = gr.Button("대화 내역 지우기")
# deepseek_respond 함수에 deepseek_token 인자를 전달하도록 수정
inputs_for_deepseek = [
deepseek_msg,
deepseek_chatbot,
deepseek_system_message,
deepseek_max_tokens,
deepseek_temperature,
deepseek_top_p,
deepseek_token_box
]
deepseek_msg.submit(deepseek_respond, inputs_for_deepseek, deepseek_chatbot)
deepseek_submit_button.click(deepseek_respond, inputs_for_deepseek, deepseek_chatbot)
deepseek_clear_button.click(clear_conversation, outputs=deepseek_chatbot, queue=False)
if __name__ == "__main__":
demo.launch()