Spaces:
Running
Running
try: | |
from ipytorch import logging | |
except Exception as e: | |
import logging | |
from typing import Any, Optional, Protocol, Iterable, Callable | |
from tqdm.auto import tqdm | |
from evaluate.evaluation_suite import EvaluationSuite | |
import evaluate | |
import numpy as np | |
import datasets | |
import pandas as pd | |
from .tasks import * | |
from .utils import * | |
from itertools import chain | |
from copy import deepcopy | |
class ReasoningMetric(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# if self.config_name in ["cmmlu"]: | |
features = datasets.Features( | |
{ | |
"responses": datasets.Value("string"), | |
# "responses": datasets.Sequence(datasets.Value("float")), | |
"references": datasets.Value("string"), | |
} | |
) | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.EvaluationModuleInfo( | |
# This is the description that will appear on the modules page. | |
# module_type="measurement", | |
description="", | |
citation="", | |
inputs_description="", | |
# This defines the format of each prediction and reference | |
features=features, | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def _compute(self, responses, references): | |
return_value = getattr(Metrics, self.config_name)(responses, references) | |
match return_value: | |
case tuple(): | |
extract_responses, extract_references = return_value | |
results = { | |
self.config_name: np.mean( | |
sync_pipe(lambda x, y: x == y)( | |
zip(extract_responses, extract_references) | |
) | |
) | |
} | |
case dict(): | |
results = return_value | |
case list(): | |
results = {self.config_name: np.mean(return_value)} | |
case _: | |
raise NotImplementedError | |
return results | |
class Suite(EvaluationSuite): | |
task_class = Task | |
def __getitem__(self, key) -> Task: | |
match key: | |
case str(): | |
return self.suite[key] | |
case slice() | int(): | |
return self.tasks[key] | |
def aggregate(self, suite): | |
for cate, tasks in suite.items(): | |
if isinstance(tasks, dict): | |
suite[cate] = self.aggregate(tasks) | |
else: | |
result = [] | |
for task in tasks: | |
result.extend(task.result.values()) | |
suite[cate] = np.mean(result) | |
return suite | |
def run( | |
self, | |
model_or_pipeline: Any, | |
) -> dict[str, float]: | |
self.assert_suite_nonempty() | |
self.suite: dict[str, list[Task]] | |
for task in (bar := tqdm(self.tasks)): | |
bar.desc = f"complete {task.name}." | |
_ = task.run(model_or_pipeline) | |
return self.aggregate(deepcopy(self.suite)) | |
def arun(self, model_or_pipeline): | |
async def sync_function(): | |
return await tqdm.gather( | |
*[task.run(model_or_pipeline) for task in self.tasks], leave=False | |
) | |
asyncio.run(sync_function()) | |
return self.aggregate(deepcopy(self.suite)) | |
def get_suite(self, name) -> dict[str, Task]: | |
chat = False | |
match name: | |
case _ if "chat" in name: | |
chat = True | |
match name: | |
case _ if name.startswith("mmlu"): | |
suite = MMLU.suite(chat=chat) | |
case _ if name.startswith("cmmlu"): | |
suite = CMMLU.suite(chat=chat) | |
case _ if name.startswith("ceval"): | |
suite = CEVAL.suite(chat=chat) | |
case "gsm8k": | |
suite = Task( | |
dataset_name=("gsm8k", "main"), | |
metric_name=("sustech/tlem", "gsm8k"), | |
input_column="question", | |
label_column="answer", | |
) | |
case "bbh": | |
suite = BBH.suite() | |
case "arc": | |
suite = ARC.suite() | |
case "hellaswag": | |
suite = HellaSwag.suite() | |
case "drop": | |
suite = DROP.suite() | |
case "winogrande": | |
suite = Winogrande.suite() | |
case "mt_bench": | |
suite = Task( | |
dataset_name="SUSTech/mt_bench_judge", | |
split="train", | |
prompt=mt_bench_prompt | |
# metric_name=("sustech/tlem", "gsm8k"), | |
) | |
case "MATH" | "competition_math": | |
suite = Task( | |
dataset_name="hendrycks/competition_math", | |
prompt="This is a math problem, please think step by step and slove it: {input_column}. Simplify your final answer as much as possible and surround them with '$' in TeX form", | |
metric_name=("sustech/tlem", "MATH"), | |
input_column="problem", | |
label_column="solution", | |
) | |
case "open-leaderboard": | |
suite = {} | |
for name in [ | |
"arc", | |
"hellaswag", | |
"mmlu-chat", | |
"winogrande", | |
"gsm8k", | |
# "truthful_qa", | |
"drop", | |
]: | |
suite[name] = self.get_suite(name) | |
if isinstance(suite, Task): | |
suite = [suite] | |
if isinstance(suite, list): | |
suite = {name: suite} | |
return suite | |
def singleton(self, task): | |
try: | |
return self.tasks[self.tasks.index(task)] | |
except Exception as e: | |
self.tasks.append(task) | |
return self.tasks[-1] | |
def drop_duplicates(self, suite): | |
for category, tasks in suite.items(): | |
if isinstance(tasks, dict): | |
suite[category] = self.drop_duplicates(tasks) | |
else: | |
suite[category] = [self.singleton(task) for task in tasks] | |
return suite | |
def load(self, name): | |
self.suite.update(self.get_suite(name)) | |
self.suite = self.drop_duplicates(self.suite) | |
def __init__(self, name="tlem"): | |
super().__init__(name) | |
self.tasks = [] | |
self.suite = {} | |