Spaces:
Running
Running
refactor
Browse files
tasks.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from datasets import load_dataset, Dataset
|
3 |
+
from functools import cached_property
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
from typing import Any, Optional, Protocol, Iterable, Callable
|
6 |
+
|
7 |
+
from utils import (
|
8 |
+
NUMERIC_IN_ZH,
|
9 |
+
extract_choice_ans,
|
10 |
+
extract_numeric,
|
11 |
+
get_answer,
|
12 |
+
is_equiv,
|
13 |
+
)
|
14 |
+
|
15 |
+
from evaluate import load
|
16 |
+
|
17 |
+
TextGenerationPipeline = Callable[[Iterable[str]], list[str]]
|
18 |
+
|
19 |
+
|
20 |
+
def fake_pipeline(prompts: Iterable[str]) -> list[str]:
|
21 |
+
return [prompt for prompt in tqdm(prompts)]
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class Task:
|
26 |
+
dataset_name: str | tuple[str, str] = ("gsm8k", "main")
|
27 |
+
split: str = "test"
|
28 |
+
# metrics: list[str] = field(default_factory=list)
|
29 |
+
metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k")
|
30 |
+
input_column: str = "question"
|
31 |
+
label_column: str = "answer"
|
32 |
+
prompt: Optional[Callable | str] = None
|
33 |
+
|
34 |
+
@cached_property
|
35 |
+
def name(self):
|
36 |
+
return (
|
37 |
+
self.dataset_name
|
38 |
+
if isinstance(self.dataset_name, str)
|
39 |
+
else self.dataset_name[0]
|
40 |
+
) + f"-{self.split}"
|
41 |
+
|
42 |
+
@cached_property
|
43 |
+
def samples(self):
|
44 |
+
return self.dataset[self.input_column]
|
45 |
+
|
46 |
+
@cached_property
|
47 |
+
def dataset(self):
|
48 |
+
ds = load_dataset(
|
49 |
+
*self.dataset_name
|
50 |
+
if isinstance(self.dataset_name, tuple)
|
51 |
+
else self.dataset_name,
|
52 |
+
split=self.split,
|
53 |
+
)
|
54 |
+
if self.prompt is not None:
|
55 |
+
ds = ds.map(
|
56 |
+
lambda example: {
|
57 |
+
self.input_column: self.prompt.format(
|
58 |
+
input_column=example[self.input_column]
|
59 |
+
)
|
60 |
+
}
|
61 |
+
if isinstance(self.prompt, str)
|
62 |
+
else self.prompt(example),
|
63 |
+
)
|
64 |
+
|
65 |
+
return ds
|
66 |
+
|
67 |
+
@cached_property
|
68 |
+
def metric(self):
|
69 |
+
metric = (
|
70 |
+
load(self.metric_name)
|
71 |
+
if isinstance(self.metric_name, str)
|
72 |
+
else load(*self.metric_name)
|
73 |
+
)
|
74 |
+
return metric
|
75 |
+
|
76 |
+
def run(self, pipeline: TextGenerationPipeline = fake_pipeline):
|
77 |
+
outputs = pipeline(self.samples)
|
78 |
+
return self.metric.compute(
|
79 |
+
responses=outputs, references=self.dataset[self.label_column]
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
class Metrics:
|
84 |
+
def gsm8k(responses: list[str], answers: list[str | int]):
|
85 |
+
scores = []
|
86 |
+
for response, answer in zip(responses, answers):
|
87 |
+
pred = extract_numeric(response)
|
88 |
+
gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
|
89 |
+
scores.append(1.0 * (pred == gold))
|
90 |
+
return scores
|
91 |
+
|
92 |
+
def MATH(responses: list[str], answers: list[str]):
|
93 |
+
scores = []
|
94 |
+
|
95 |
+
for response, answer in zip(responses, answers):
|
96 |
+
indices = [pos for pos, char in enumerate(response) if char == "$"]
|
97 |
+
if len(indices) <= 2:
|
98 |
+
scores.append(0)
|
99 |
+
continue
|
100 |
+
else:
|
101 |
+
result = response[indices[-2] + 1 : indices[-1]]
|
102 |
+
gold = get_answer(answer)
|
103 |
+
scores.append(1.0 * is_equiv(result, gold))
|
104 |
+
|
105 |
+
return scores
|
106 |
+
|
107 |
+
def math23k(responses: list[str], answers: list[str]):
|
108 |
+
scores = []
|
109 |
+
for response, answer in zip(responses, answers):
|
110 |
+
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
111 |
+
gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH)
|
112 |
+
scores.append(1.0 * (pred == gold))
|
113 |
+
return scores
|
114 |
+
|
115 |
+
def gsm8k_zh(responses: list[str], answers: list[str]):
|
116 |
+
scores = []
|
117 |
+
for response, answer in zip(responses, answers):
|
118 |
+
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
119 |
+
gold = extract_numeric(answer)
|
120 |
+
scores.append(1.0 * (pred == gold))
|
121 |
+
return scores
|
122 |
+
|
123 |
+
def svamp(responses: list[float], answers: list[str]):
|
124 |
+
scores = []
|
125 |
+
for response, answer in zip(responses, answers):
|
126 |
+
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
127 |
+
gold = answer
|
128 |
+
scores.append(1.0 * (float(pred) == gold))
|
129 |
+
return scores
|
130 |
+
|
131 |
+
def mmlu(responses, answers):
|
132 |
+
scores = []
|
133 |
+
for response, answer in zip(responses, answers):
|
134 |
+
pred = extract_choice_ans(response)
|
135 |
+
gold = answer.lower()
|
136 |
+
scores.append(1.0 * (pred == gold))
|
137 |
+
return scores
|
tlem.py
CHANGED
@@ -8,6 +8,11 @@ except Exception as e:
|
|
8 |
from typing import Any, Optional, Protocol, Iterable, Callable
|
9 |
from tqdm.auto import tqdm
|
10 |
from evaluate.evaluation_suite import EvaluationSuite
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# %%
|
13 |
|
@@ -15,150 +20,6 @@ from evaluate.evaluation_suite import EvaluationSuite
|
|
15 |
|
16 |
# %load_ext ipytorch
|
17 |
# %ls
|
18 |
-
from utils import (
|
19 |
-
NUMERIC_IN_ZH,
|
20 |
-
extract_choice_ans,
|
21 |
-
extract_numeric,
|
22 |
-
get_answer,
|
23 |
-
is_equiv,
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
from dataclasses import dataclass, field
|
28 |
-
from datasets import load_dataset, Dataset
|
29 |
-
from functools import cached_property
|
30 |
-
|
31 |
-
|
32 |
-
TextGenerationPipeline = Callable[[Iterable[str]], list[str]]
|
33 |
-
|
34 |
-
|
35 |
-
from evaluate import load
|
36 |
-
|
37 |
-
|
38 |
-
def fake_pipeline(prompts: Iterable[str]) -> list[str]:
|
39 |
-
return [prompt for prompt in tqdm(prompts)]
|
40 |
-
|
41 |
-
|
42 |
-
@dataclass
|
43 |
-
class Task:
|
44 |
-
dataset_name: str | tuple[str, str] = ("gsm8k", "main")
|
45 |
-
split: str = "test"
|
46 |
-
# metrics: list[str] = field(default_factory=list)
|
47 |
-
metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k")
|
48 |
-
input_column: str = "question"
|
49 |
-
label_column: str = "answer"
|
50 |
-
prompt: Optional[Callable | str] = None
|
51 |
-
|
52 |
-
@cached_property
|
53 |
-
def name(self):
|
54 |
-
return (
|
55 |
-
self.dataset_name
|
56 |
-
if isinstance(self.dataset_name, str)
|
57 |
-
else self.dataset_name[0]
|
58 |
-
) + f"-{self.split}"
|
59 |
-
|
60 |
-
@cached_property
|
61 |
-
def samples(self):
|
62 |
-
return self.dataset[self.input_column]
|
63 |
-
|
64 |
-
@cached_property
|
65 |
-
def dataset(self):
|
66 |
-
ds = load_dataset(
|
67 |
-
*self.dataset_name
|
68 |
-
if isinstance(self.dataset_name, tuple)
|
69 |
-
else self.dataset_name,
|
70 |
-
split=self.split,
|
71 |
-
)
|
72 |
-
if self.prompt is not None:
|
73 |
-
ds = ds.map(
|
74 |
-
lambda example: {
|
75 |
-
self.input_column: self.prompt.format(
|
76 |
-
input_column=example[self.input_column]
|
77 |
-
)
|
78 |
-
}
|
79 |
-
if isinstance(self.prompt, str)
|
80 |
-
else self.prompt(example),
|
81 |
-
)
|
82 |
-
|
83 |
-
return ds
|
84 |
-
|
85 |
-
@cached_property
|
86 |
-
def metric(self):
|
87 |
-
metric = (
|
88 |
-
load(self.metric_name)
|
89 |
-
if isinstance(self.metric_name, str)
|
90 |
-
else load(*self.metric_name)
|
91 |
-
)
|
92 |
-
return metric
|
93 |
-
|
94 |
-
def run(self, pipeline: TextGenerationPipeline = fake_pipeline):
|
95 |
-
outputs = pipeline(self.samples)
|
96 |
-
return self.metric.compute(
|
97 |
-
responses=outputs, references=self.dataset[self.label_column]
|
98 |
-
)
|
99 |
-
|
100 |
-
|
101 |
-
class Metrics:
|
102 |
-
def gsm8k(responses: list[str], answers: list[str | int]):
|
103 |
-
scores = []
|
104 |
-
for response, answer in zip(responses, answers):
|
105 |
-
pred = extract_numeric(response)
|
106 |
-
gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
|
107 |
-
scores.append(1.0 * (pred == gold))
|
108 |
-
return scores
|
109 |
-
|
110 |
-
def MATH(responses: list[str], answers: list[str]):
|
111 |
-
scores = []
|
112 |
-
|
113 |
-
for response, answer in zip(responses, answers):
|
114 |
-
indices = [pos for pos, char in enumerate(response) if char == "$"]
|
115 |
-
if len(indices) <= 2:
|
116 |
-
scores.append(0)
|
117 |
-
continue
|
118 |
-
else:
|
119 |
-
result = response[indices[-2] + 1 : indices[-1]]
|
120 |
-
gold = get_answer(answer)
|
121 |
-
scores.append(1.0 * is_equiv(result, gold))
|
122 |
-
|
123 |
-
return scores
|
124 |
-
|
125 |
-
def math23k(responses: list[str], answers: list[str]):
|
126 |
-
scores = []
|
127 |
-
for response, answer in zip(responses, answers):
|
128 |
-
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
129 |
-
gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH)
|
130 |
-
scores.append(1.0 * (pred == gold))
|
131 |
-
return scores
|
132 |
-
|
133 |
-
def gsm8k_zh(responses: list[str], answers: list[str]):
|
134 |
-
scores = []
|
135 |
-
for response, answer in zip(responses, answers):
|
136 |
-
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
137 |
-
gold = extract_numeric(answer)
|
138 |
-
scores.append(1.0 * (pred == gold))
|
139 |
-
return scores
|
140 |
-
|
141 |
-
def svamp(responses: list[float], answers: list[str]):
|
142 |
-
scores = []
|
143 |
-
for response, answer in zip(responses, answers):
|
144 |
-
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
145 |
-
gold = answer
|
146 |
-
scores.append(1.0 * (float(pred) == gold))
|
147 |
-
return scores
|
148 |
-
|
149 |
-
def mmlu(responses, answers):
|
150 |
-
scores = []
|
151 |
-
for response, answer in zip(responses, answers):
|
152 |
-
pred = extract_choice_ans(response)
|
153 |
-
gold = answer.lower()
|
154 |
-
scores.append(1.0 * (pred == gold))
|
155 |
-
return scores
|
156 |
-
|
157 |
-
|
158 |
-
import evaluate
|
159 |
-
import numpy as np
|
160 |
-
|
161 |
-
import datasets
|
162 |
|
163 |
|
164 |
# TODO: Add BibTeX citation
|
@@ -276,10 +137,3 @@ class Suite(EvaluationSuite):
|
|
276 |
|
277 |
# %%
|
278 |
|
279 |
-
if __name__ == "__main__":
|
280 |
-
# metric = load("sustech/tlem", "gsm8k")
|
281 |
-
# output = metric.compute(responses=["answer is 2", "1+2"], references=["2", "3"])
|
282 |
-
# logging.info(output)
|
283 |
-
suite = EvaluationSuite.load("sustech/tlem")
|
284 |
-
suite.run(fake_pipeline)
|
285 |
-
# %%
|
|
|
8 |
from typing import Any, Optional, Protocol, Iterable, Callable
|
9 |
from tqdm.auto import tqdm
|
10 |
from evaluate.evaluation_suite import EvaluationSuite
|
11 |
+
import evaluate
|
12 |
+
import numpy as np
|
13 |
+
import datasets
|
14 |
+
from tasks import Task, Metrics, fake_pipeline
|
15 |
+
from utils import is_equiv
|
16 |
|
17 |
# %%
|
18 |
|
|
|
20 |
|
21 |
# %load_ext ipytorch
|
22 |
# %ls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
# TODO: Add BibTeX citation
|
|
|
137 |
|
138 |
# %%
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|