Spaces:
Build error
Build error
First commit
Browse files- .gitignore +129 -0
- LICENSE +21 -0
- README.md +0 -13
- app.py +114 -0
- demo_cpu.py +98 -0
- models/G_w_checkpoint_13820.pt +3 -0
- models/L_w_checkpoint_27640.pt +3 -0
- networks/__init__.py +0 -0
- networks/paperedge.py +553 -0
- networks/paperedge_cpu.py +591 -0
- networks/tps_warp.py +204 -0
- requirements.txt +5 -0
- utils/__init__.py +0 -0
- utils/handlers.py +84 -0
.gitignore
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 CVLab@StonyBrook
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: PaperEdgeDemo
|
3 |
-
emoji: 🌖
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.6
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- encoding: utf-8 -*-
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.system('pip install -r requirements.txt')
|
6 |
+
|
7 |
+
import time
|
8 |
+
from pathlib import Path
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from networks.paperedge_cpu import GlobalWarper, LocalWarper, WarperUtil
|
14 |
+
import gradio as gr
|
15 |
+
|
16 |
+
|
17 |
+
cv2.setNumThreads(0)
|
18 |
+
cv2.ocl.setUseOpenCL(False)
|
19 |
+
|
20 |
+
|
21 |
+
class PaperEdge(object):
|
22 |
+
def __init__(self, enet_path, tnet_path, device, dst_dir) -> None:
|
23 |
+
self.device = device
|
24 |
+
self.dst_dir = dst_dir
|
25 |
+
|
26 |
+
self.netG = GlobalWarper().to(device)
|
27 |
+
netG_state = torch.load(enet_path, map_location=device)['G']
|
28 |
+
self.netG.load_state_dict(netG_state)
|
29 |
+
self.netG.eval()
|
30 |
+
|
31 |
+
self.netL = LocalWarper().to(device)
|
32 |
+
netL_state = torch.load(tnet_path, map_location=device)['L']
|
33 |
+
self.netL.load_state_dict(netL_state)
|
34 |
+
self.netL.eval()
|
35 |
+
|
36 |
+
self.warpUtil = WarperUtil(64).to(device)
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def load_img(img_path):
|
40 |
+
im = cv2.imread(img_path).astype(np.float32) / 255.0
|
41 |
+
im = im[:, :, (2, 1, 0)]
|
42 |
+
im = cv2.resize(im, (256, 256), interpolation=cv2.INTER_AREA)
|
43 |
+
im = torch.from_numpy(np.transpose(im, (2, 0, 1)))
|
44 |
+
return im
|
45 |
+
|
46 |
+
def __call__(self, img_path):
|
47 |
+
time_stamp = time.strftime('%Y-%m-%d-%H-%M-%S',
|
48 |
+
time.localtime(time.time()))
|
49 |
+
|
50 |
+
gs_d, ls_d = None, None
|
51 |
+
with torch.no_grad():
|
52 |
+
x = self.load_img(img_path)
|
53 |
+
x = x.unsqueeze(0).to(self.device)
|
54 |
+
|
55 |
+
d = self.netG(x)
|
56 |
+
|
57 |
+
d = self.warpUtil.global_post_warp(d, 64)
|
58 |
+
|
59 |
+
gs_d = copy.deepcopy(d)
|
60 |
+
|
61 |
+
d = F.interpolate(d, size=256, mode='bilinear', align_corners=True)
|
62 |
+
y0 = F.grid_sample(x, d.permute(0, 2, 3, 1), align_corners=True)
|
63 |
+
ls_d = self.netL(y0)
|
64 |
+
|
65 |
+
ls_d = F.interpolate(ls_d, size=256, mode='bilinear', align_corners=True)
|
66 |
+
ls_d = ls_d.clamp(-1.0, 1.0)
|
67 |
+
|
68 |
+
im = cv2.imread(img_path).astype(np.float32) / 255.0
|
69 |
+
im = torch.from_numpy(np.transpose(im, (2, 0, 1)))
|
70 |
+
im = im.to(self.device).unsqueeze(0)
|
71 |
+
|
72 |
+
gs_d = F.interpolate(gs_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True)
|
73 |
+
gs_y = F.grid_sample(im, gs_d.permute(0, 2, 3, 1), align_corners=True).detach()
|
74 |
+
|
75 |
+
ls_d = F.interpolate(ls_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True)
|
76 |
+
ls_y = F.grid_sample(gs_y, ls_d.permute(0, 2, 3, 1), align_corners=True).detach()
|
77 |
+
ls_y = ls_y.squeeze().permute(1, 2, 0).cpu().numpy()
|
78 |
+
|
79 |
+
save_path = f'{self.dst_dir}/{time_stamp}.png'
|
80 |
+
cv2.imwrite(save_path, ls_y * 255.)
|
81 |
+
return save_path
|
82 |
+
|
83 |
+
|
84 |
+
def inference(img):
|
85 |
+
img_path = img.name
|
86 |
+
save_img_path = paper_edge(img_path)
|
87 |
+
return save_img_path
|
88 |
+
|
89 |
+
|
90 |
+
enet_path = 'models/G_w_checkpoint_13820.pt'
|
91 |
+
tnet_path = 'models/L_w_checkpoint_27640.pt'
|
92 |
+
device = torch.device('cpu')
|
93 |
+
|
94 |
+
dst_dir = Path('inference/')
|
95 |
+
if not dst_dir.exists():
|
96 |
+
dst_dir.mkdir(parents=True, exist_ok=True)
|
97 |
+
|
98 |
+
paper_edge = PaperEdge(enet_path, tnet_path, device, dst_dir)
|
99 |
+
|
100 |
+
title = 'PaperEdge Demo'
|
101 |
+
description = 'This is the demo for the paper "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022). Github repo: https://github.com/cvlab-stonybrook/PaperEdge'
|
102 |
+
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
103 |
+
|
104 |
+
gr.Interface(
|
105 |
+
inference,
|
106 |
+
inputs=gr.inputs.Image(type='file', label='Input'),
|
107 |
+
outputs=[
|
108 |
+
gr.outputs.Image(type='file', label='Output_image'),
|
109 |
+
],
|
110 |
+
title=title,
|
111 |
+
description=description,
|
112 |
+
css=css,
|
113 |
+
allow_flagging='never',
|
114 |
+
).launch(debug=True, enable_queue=True)
|
demo_cpu.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- encoding: utf-8 -*-
|
2 |
+
import argparse
|
3 |
+
import copy
|
4 |
+
import time
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from networks.paperedge_cpu import GlobalWarper, LocalWarper, WarperUtil
|
12 |
+
|
13 |
+
cv2.setNumThreads(0)
|
14 |
+
cv2.ocl.setUseOpenCL(False)
|
15 |
+
|
16 |
+
|
17 |
+
class PaperEdge(object):
|
18 |
+
def __init__(self, enet_path, tnet_path, device) -> None:
|
19 |
+
self.device = device
|
20 |
+
|
21 |
+
self.netG = GlobalWarper().to(device)
|
22 |
+
netG_state = torch.load(enet_path, map_location=device)['G']
|
23 |
+
self.netG.load_state_dict(netG_state)
|
24 |
+
self.netG.eval()
|
25 |
+
|
26 |
+
self.netL = LocalWarper().to(device)
|
27 |
+
netL_state = torch.load(tnet_path, map_location=device)['L']
|
28 |
+
self.netL.load_state_dict(netL_state)
|
29 |
+
self.netL.eval()
|
30 |
+
|
31 |
+
self.warpUtil = WarperUtil(64).to(device)
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def load_img(img_path):
|
35 |
+
im = cv2.imread(img_path).astype(np.float32) / 255.0
|
36 |
+
im = im[:, :, (2, 1, 0)]
|
37 |
+
im = cv2.resize(im, (256, 256), interpolation=cv2.INTER_AREA)
|
38 |
+
im = torch.from_numpy(np.transpose(im, (2, 0, 1)))
|
39 |
+
return im
|
40 |
+
|
41 |
+
def infer(self, img_path):
|
42 |
+
gs_d, ls_d = None, None
|
43 |
+
with torch.no_grad():
|
44 |
+
x = self.load_img(img_path)
|
45 |
+
x = x.unsqueeze(0).to(self.device)
|
46 |
+
|
47 |
+
d = self.netG(x)
|
48 |
+
|
49 |
+
d = self.warpUtil.global_post_warp(d, 64)
|
50 |
+
|
51 |
+
gs_d = copy.deepcopy(d)
|
52 |
+
|
53 |
+
d = F.interpolate(d, size=256, mode='bilinear', align_corners=True)
|
54 |
+
y0 = F.grid_sample(x, d.permute(0, 2, 3, 1), align_corners=True)
|
55 |
+
ls_d = self.netL(y0)
|
56 |
+
|
57 |
+
ls_d = F.interpolate(ls_d, size=256, mode='bilinear', align_corners=True)
|
58 |
+
ls_d = ls_d.clamp(-1.0, 1.0)
|
59 |
+
|
60 |
+
im = cv2.imread(img_path).astype(np.float32) / 255.0
|
61 |
+
im = torch.from_numpy(np.transpose(im, (2, 0, 1)))
|
62 |
+
im = im.to(self.device).unsqueeze(0)
|
63 |
+
|
64 |
+
gs_d = F.interpolate(gs_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True)
|
65 |
+
gs_y = F.grid_sample(im, gs_d.permute(0, 2, 3, 1), align_corners=True).detach()
|
66 |
+
|
67 |
+
ls_d = F.interpolate(ls_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True)
|
68 |
+
ls_y = F.grid_sample(gs_y, ls_d.permute(0, 2, 3, 1), align_corners=True).detach()
|
69 |
+
ls_y = ls_y.squeeze().permute(1, 2, 0).cpu().numpy()
|
70 |
+
|
71 |
+
save_path = f'{dst_dir}/result_ls.png'
|
72 |
+
cv2.imwrite(save_path, ls_y * 255.)
|
73 |
+
return save_path
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == '__main__':
|
77 |
+
parser = argparse.ArgumentParser()
|
78 |
+
parser.add_argument('--Enet_ckpt', type=str,
|
79 |
+
default='models/G_w_checkpoint_13820.pt')
|
80 |
+
parser.add_argument('--Tnet_ckpt', type=str,
|
81 |
+
default='models/L_w_checkpoint_27640.pt')
|
82 |
+
parser.add_argument('--img_path', type=str, default='images/3.jpg')
|
83 |
+
parser.add_argument('--out_dir', type=str, default='output')
|
84 |
+
parser.add_argument('--device', type=str, default='cpu')
|
85 |
+
args = parser.parse_args()
|
86 |
+
|
87 |
+
if args.device == 'cuda' and torch.cuda.is_available():
|
88 |
+
device = torch.device('cuda:0')
|
89 |
+
else:
|
90 |
+
device = torch.device('cpu')
|
91 |
+
|
92 |
+
dst_dir = args.out_dir
|
93 |
+
Path(dst_dir).mkdir(parents=True, exist_ok=True)
|
94 |
+
|
95 |
+
paper_edge = PaperEdge(args.Enet_ckpt, args.Tnet_ckpt, args.device)
|
96 |
+
|
97 |
+
paper_edge.inder(args.img_path)
|
98 |
+
print('ok')
|
models/G_w_checkpoint_13820.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49489f5490f6786e4cc6896b47c3ff6511a92438fec1b3be7b1c53580975236f
|
3 |
+
size 146530295
|
models/L_w_checkpoint_27640.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eed0653d9c9fa2bd1b21f469336fc534bfaebfe20422624581141b47ddab7b6f
|
3 |
+
size 146530295
|
networks/__init__.py
ADDED
File without changes
|
networks/paperedge.py
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
# from torch.nn.utils import spectral_norm as SN
|
5 |
+
# from torchvision.models.densenet import _DenseBlock
|
6 |
+
from .tps_warp import TpsWarp, PspWarp
|
7 |
+
from functools import partial
|
8 |
+
# import plotly.graph_objects as go
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
torch.autograd.set_detect_anomaly(True)
|
14 |
+
# torch.manual_seed(0)
|
15 |
+
|
16 |
+
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
17 |
+
"""3x3 convolution with padding"""
|
18 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
19 |
+
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
20 |
+
|
21 |
+
|
22 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
23 |
+
"""1x1 convolution"""
|
24 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
25 |
+
|
26 |
+
|
27 |
+
class BasicBlock(nn.Module):
|
28 |
+
expansion = 1
|
29 |
+
|
30 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
31 |
+
base_width=64, dilation=1, norm_layer=None):
|
32 |
+
super(BasicBlock, self).__init__()
|
33 |
+
if norm_layer is None:
|
34 |
+
norm_layer = nn.BatchNorm2d
|
35 |
+
if groups != 1 or base_width != 64:
|
36 |
+
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
37 |
+
if dilation > 1:
|
38 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
39 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
40 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
41 |
+
self.bn1 = norm_layer(planes)
|
42 |
+
self.actv = nn.ReLU()
|
43 |
+
self.conv2 = conv3x3(planes, planes)
|
44 |
+
self.bn2 = norm_layer(planes)
|
45 |
+
self.downsample = downsample
|
46 |
+
self.stride = stride
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
identity = x
|
50 |
+
|
51 |
+
out = self.conv1(x)
|
52 |
+
out = self.bn1(out)
|
53 |
+
out = self.actv(out)
|
54 |
+
|
55 |
+
out = self.conv2(out)
|
56 |
+
out = self.bn2(out)
|
57 |
+
|
58 |
+
if self.downsample is not None:
|
59 |
+
identity = self.downsample(x)
|
60 |
+
|
61 |
+
out += identity
|
62 |
+
out = self.actv(out)
|
63 |
+
|
64 |
+
return out
|
65 |
+
|
66 |
+
def _make_layer(block, inplanes, planes, blocks, stride=1, dilate=False):
|
67 |
+
norm_layer = nn.BatchNorm2d
|
68 |
+
downsample = None
|
69 |
+
|
70 |
+
if stride != 1 or inplanes != planes * block.expansion:
|
71 |
+
downsample = nn.Sequential(
|
72 |
+
nn.Conv2d(inplanes, planes * block.expansion, 1, stride, bias=False),
|
73 |
+
norm_layer(planes * block.expansion),
|
74 |
+
)
|
75 |
+
|
76 |
+
layers = []
|
77 |
+
layers.append(block(inplanes, planes, stride, downsample, norm_layer=norm_layer))
|
78 |
+
for _ in range(1, blocks):
|
79 |
+
layers.append(block(planes, planes,
|
80 |
+
norm_layer=norm_layer))
|
81 |
+
|
82 |
+
return nn.Sequential(*layers)
|
83 |
+
|
84 |
+
class Interpolate(nn.Module):
|
85 |
+
def __init__(self, size, mode):
|
86 |
+
super(Interpolate, self).__init__()
|
87 |
+
self.interp = nn.functional.interpolate
|
88 |
+
self.size = size
|
89 |
+
self.mode = mode
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
x = self.interp(x, size=self.size, mode=self.mode, align_corners=True)
|
93 |
+
return x
|
94 |
+
|
95 |
+
class GlobalWarper(nn.Module):
|
96 |
+
def __init__(self):
|
97 |
+
super(GlobalWarper, self).__init__()
|
98 |
+
modules = [
|
99 |
+
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
100 |
+
nn.BatchNorm2d(64),
|
101 |
+
nn.ReLU()
|
102 |
+
]
|
103 |
+
|
104 |
+
# encoder
|
105 |
+
planes = [64, 128, 256, 256, 512, 512]
|
106 |
+
strides = [2, 2, 2, 2, 2]
|
107 |
+
blocks = [1, 1, 1, 1, 1]
|
108 |
+
for k in range(len(planes) - 1):
|
109 |
+
modules.append(_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k]))
|
110 |
+
self.encoder = nn.Sequential(*modules)
|
111 |
+
|
112 |
+
# decoder
|
113 |
+
modules = []
|
114 |
+
planes = [512, 512, 256, 128, 64]
|
115 |
+
strides = [2, 2, 2, 2]
|
116 |
+
# tsizes = [3, 5, 9, 17, 33]
|
117 |
+
blocks = [1, 1, 1, 1]
|
118 |
+
for k in range(len(planes) - 1):
|
119 |
+
# modules += [nn.Sequential(Interpolate(size=tsizes[k], mode='bilinear'),
|
120 |
+
# _make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
|
121 |
+
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True),
|
122 |
+
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
|
123 |
+
# self.decoder = nn.ModuleList(modules)
|
124 |
+
self.decoder = nn.Sequential(*modules)
|
125 |
+
|
126 |
+
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1))
|
127 |
+
self.to_warp[0].weight.data.fill_(0.0)
|
128 |
+
self.to_warp[0].bias.data.fill_(0.0)
|
129 |
+
|
130 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256))
|
131 |
+
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda')
|
132 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64), torch.linspace(-1, 1, 64))
|
133 |
+
### note we mulitply a 0.9 so the network is initialized closer to GT. This is different from localwarper net
|
134 |
+
self.basegrid = torch.stack((ix * 0.9, iy * 0.9), dim=0).unsqueeze(0).to('cuda')
|
135 |
+
|
136 |
+
# # box filter
|
137 |
+
# ksize = 7
|
138 |
+
# p = int((ksize - 1) / 2)
|
139 |
+
# self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate')
|
140 |
+
# bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize
|
141 |
+
# self.box_filter = partial(F.conv2d, weight=bw)
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
def forward(self, im):
|
146 |
+
# print(self.to_warp[0].weight.data)
|
147 |
+
# coordconv
|
148 |
+
B = im.size(0)
|
149 |
+
c = self.coord.expand(B, -1, -1, -1).detach()
|
150 |
+
t = torch.cat((im, c), dim=1)
|
151 |
+
|
152 |
+
t = self.encoder(t)
|
153 |
+
t = self.decoder(t)
|
154 |
+
t = self.to_warp(t)
|
155 |
+
|
156 |
+
gs = t + self.basegrid
|
157 |
+
|
158 |
+
return gs
|
159 |
+
|
160 |
+
class LocalWarper(nn.Module):
|
161 |
+
def __init__(self):
|
162 |
+
super().__init__()
|
163 |
+
modules = [
|
164 |
+
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
165 |
+
nn.BatchNorm2d(64),
|
166 |
+
nn.ReLU()
|
167 |
+
]
|
168 |
+
# encoder
|
169 |
+
planes = [64, 128, 256, 256, 512, 512]
|
170 |
+
strides = [2, 2, 2, 2, 2]
|
171 |
+
blocks = [1, 1, 1, 1, 1]
|
172 |
+
for k in range(len(planes) - 1):
|
173 |
+
modules.append(_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k]))
|
174 |
+
self.encoder = nn.Sequential(*modules)
|
175 |
+
|
176 |
+
# decoder
|
177 |
+
modules = []
|
178 |
+
planes = [512, 512, 256, 128, 64]
|
179 |
+
strides = [2, 2, 2, 2]
|
180 |
+
# tsizes = [3, 5, 9, 17, 33]
|
181 |
+
blocks = [1, 1, 1, 1]
|
182 |
+
for k in range(len(planes) - 1):
|
183 |
+
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True),
|
184 |
+
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
|
185 |
+
self.decoder = nn.Sequential(*modules)
|
186 |
+
|
187 |
+
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1))
|
188 |
+
self.to_warp[0].weight.data.fill_(0.0)
|
189 |
+
self.to_warp[0].bias.data.fill_(0.0)
|
190 |
+
|
191 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256))
|
192 |
+
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda')
|
193 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64), torch.linspace(-1, 1, 64))
|
194 |
+
self.basegrid = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda')
|
195 |
+
|
196 |
+
# box filter
|
197 |
+
ksize = 5
|
198 |
+
p = int((ksize - 1) / 2)
|
199 |
+
self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate')
|
200 |
+
bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize
|
201 |
+
self.box_filter = partial(F.conv2d, weight=bw)
|
202 |
+
|
203 |
+
def forward(self, im):
|
204 |
+
c = self.coord.expand(im.size(0), -1, -1, -1).detach()
|
205 |
+
t = torch.cat((im, c), dim=1)
|
206 |
+
|
207 |
+
# encoder
|
208 |
+
t = self.encoder(t)
|
209 |
+
t = self.decoder(t)
|
210 |
+
t = self.to_warp(t)
|
211 |
+
|
212 |
+
# # filter
|
213 |
+
# t = self.pad_replct(t)
|
214 |
+
# tx = self.box_filter(t[:, 0 : 1, ...])
|
215 |
+
# ty = self.box_filter(t[:, 1 : 2, ...])
|
216 |
+
# t = torch.cat((tx, ty), dim=1)
|
217 |
+
|
218 |
+
# bd condition
|
219 |
+
t[..., 1, 0, :] = 0
|
220 |
+
t[..., 1, -1, :] = 0
|
221 |
+
t[..., 0, :, 0] = 0
|
222 |
+
t[..., 0, :, -1] = 0
|
223 |
+
|
224 |
+
gs = t + self.basegrid
|
225 |
+
return gs
|
226 |
+
|
227 |
+
def gs_to_bd(gs):
|
228 |
+
# gs: B 2 H W
|
229 |
+
t = torch.cat([gs[..., 0, :], gs[..., -1, :], gs[..., 1 : -1, 0], gs[..., 1 : -1, -1]], dim=2).permute(0, 2, 1)
|
230 |
+
# t: B 2(W + H - 1) 2
|
231 |
+
return t
|
232 |
+
|
233 |
+
class MaskLoss(nn.Module):
|
234 |
+
def __init__(self, gsize):
|
235 |
+
super().__init__()
|
236 |
+
self.tpswarper = TpsWarp(gsize)
|
237 |
+
self.pspwarper = PspWarp()
|
238 |
+
# self.imsize = imsize
|
239 |
+
self.msk = torch.ones(1, 1, gsize, gsize, device='cuda')
|
240 |
+
self.cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]], dtype=torch.float, device='cuda').unsqueeze(0)
|
241 |
+
|
242 |
+
def forward(self, gs, y, s):
|
243 |
+
# resize gs to s*s
|
244 |
+
B, _, s0, _ = gs.size()
|
245 |
+
tgs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
|
246 |
+
|
247 |
+
# use only the boundary points
|
248 |
+
srcpts = gs_to_bd(tgs)
|
249 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s))
|
250 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand_as(tgs)
|
251 |
+
dstpts = gs_to_bd(t)
|
252 |
+
|
253 |
+
tgs_f = self.tpswarper(srcpts, dstpts.detach())
|
254 |
+
ym = self.msk.expand_as(y)
|
255 |
+
yh = F.grid_sample(ym, tgs_f.permute(0, 2, 3, 1), align_corners=True)
|
256 |
+
loss_f = F.l1_loss(yh, y)
|
257 |
+
|
258 |
+
# forward/backward consistency loss
|
259 |
+
tgs_b = self.tpswarper(dstpts.detach(), srcpts)
|
260 |
+
# tgs_b = F.interpolate(tgs, s0, mode='bilinear', align_corners=True)
|
261 |
+
yy = F.grid_sample(y, tgs_b.permute(0, 2, 3, 1), align_corners=True)
|
262 |
+
loss_b = F.l1_loss(yy, ym)
|
263 |
+
|
264 |
+
return loss_f + loss_b, tgs_f
|
265 |
+
|
266 |
+
def _dist(self, x):
|
267 |
+
# adjacent point distance
|
268 |
+
# B, 2, n
|
269 |
+
x = torch.cat([x[..., 0 : 1].detach(), x[..., 1 : -1], x[..., -1 : ].detach()], dim=2)
|
270 |
+
d = x[..., 1:] - x[..., :-1]
|
271 |
+
return torch.norm(d, dim=1)
|
272 |
+
|
273 |
+
# class TVLoss(nn.Module):
|
274 |
+
# def __init__(self):
|
275 |
+
# super(TVLoss, self).__init__()
|
276 |
+
|
277 |
+
# def forward(self, gs):
|
278 |
+
# loss = self._dist(gs[..., 1:], gs[..., :-1]) + self._dist(gs[..., 1:, :], gs[..., :-1, :])
|
279 |
+
# return loss
|
280 |
+
|
281 |
+
# def _dist(self, x1, x0):
|
282 |
+
# d = torch.norm(x1 - x0, dim=1, keepdim=True)
|
283 |
+
# d = torch.abs(d - torch.mean(d, dim=(2, 3), keepdim=True)).mean()
|
284 |
+
# return d
|
285 |
+
|
286 |
+
class WarperUtil(nn.Module):
|
287 |
+
def __init__(self, imsize):
|
288 |
+
super().__init__()
|
289 |
+
self.tpswarper = TpsWarp(imsize)
|
290 |
+
self.pspwarper = PspWarp()
|
291 |
+
self.s = imsize
|
292 |
+
|
293 |
+
def global_post_warp(self, gs, s):
|
294 |
+
# B, _, s0, _ = gs.size()
|
295 |
+
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
|
296 |
+
# gs = F.interpolate(gs, s0, mode='bilinear', align_corners=True)
|
297 |
+
# extract info
|
298 |
+
m1 = gs[..., 0, :]
|
299 |
+
m2 = gs[..., -1, :]
|
300 |
+
n1 = gs[..., 0]
|
301 |
+
n2 = gs[..., -1]
|
302 |
+
# for x
|
303 |
+
m1x_interval_ratio = m1[:, 0, 1:] - m1[:, 0, :-1]
|
304 |
+
m1x_interval_ratio /= m1x_interval_ratio.sum(dim=1, keepdim=True)
|
305 |
+
m2x_interval_ratio = m2[:, 0, 1:] - m2[:, 0, :-1]
|
306 |
+
m2x_interval_ratio /= m2x_interval_ratio.sum(dim=1, keepdim=True)
|
307 |
+
# interpolate all x ratio
|
308 |
+
t = torch.stack([m1x_interval_ratio, m2x_interval_ratio], dim=1).unsqueeze(1)
|
309 |
+
mx_interval_ratio = F.interpolate(t, (s, m1x_interval_ratio.size(1)), mode='bilinear', align_corners=True)
|
310 |
+
mx_interval = (n2[..., 0 : 1, :] - n1[..., 0 : 1, :]).unsqueeze(3) * mx_interval_ratio
|
311 |
+
# cumsum to x
|
312 |
+
dx = torch.cumsum(mx_interval, dim=3) + n1[..., 0 : 1, :].unsqueeze(3)
|
313 |
+
dx = dx[..., 1 : -1, :-1]
|
314 |
+
# for y
|
315 |
+
n1y_interval_ratio = n1[:, 1, 1:] - n1[:, 1, :-1]
|
316 |
+
n1y_interval_ratio /= n1y_interval_ratio.sum(dim=1, keepdim=True)
|
317 |
+
n2y_interval_ratio = n2[:, 1, 1:] - n2[:, 1, :-1]
|
318 |
+
n2y_interval_ratio /= n2y_interval_ratio.sum(dim=1, keepdim=True)
|
319 |
+
# interpolate all x ratio
|
320 |
+
t = torch.stack([n1y_interval_ratio, n2y_interval_ratio], dim=2).unsqueeze(1)
|
321 |
+
ny_interval_ratio = F.interpolate(t, (n1y_interval_ratio.size(1), s), mode='bilinear', align_corners=True)
|
322 |
+
ny_interval = (m2[..., 1 : 2, :] - m1[..., 1 : 2, :]).unsqueeze(2) * ny_interval_ratio
|
323 |
+
# cumsum to y
|
324 |
+
dy = torch.cumsum(ny_interval, dim=2) + m1[..., 1 : 2, :].unsqueeze(2)
|
325 |
+
dy = dy[..., :-1, 1 : -1]
|
326 |
+
ds = torch.cat((dx, dy), dim=1)
|
327 |
+
gs[..., 1 : -1, 1 : -1] = ds
|
328 |
+
return gs
|
329 |
+
|
330 |
+
def perturb_warp(self, dd):
|
331 |
+
B = dd.size(0)
|
332 |
+
s = self.s
|
333 |
+
# -0.2 to 0.2
|
334 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s))
|
335 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1)
|
336 |
+
|
337 |
+
tt = t.clone()
|
338 |
+
|
339 |
+
nd = random.randint(0, 4)
|
340 |
+
for ii in range(nd):
|
341 |
+
# define deformation on bd
|
342 |
+
pm = (torch.rand(B, 1) - 0.5) * 0.2
|
343 |
+
ps = (torch.rand(B, 1) - 0.5) * 1.95
|
344 |
+
pt = ps + pm
|
345 |
+
pt = pt.clamp(-0.975, 0.975)
|
346 |
+
# put it on one bd
|
347 |
+
# [1, 1] or [-1, 1] or [-1, -1] etc
|
348 |
+
a1 = (torch.rand(B, 2) > 0.5).float() * 2 -1
|
349 |
+
# select one col for every row
|
350 |
+
a2 = torch.rand(B, 1) > 0.5
|
351 |
+
a2 = torch.cat([a2, a2.bitwise_not()], dim=1)
|
352 |
+
a3 = a1.clone()
|
353 |
+
a3[a2] = ps.view(-1)
|
354 |
+
ps = a3.clone()
|
355 |
+
a3[a2] = pt.view(-1)
|
356 |
+
pt = a3.clone()
|
357 |
+
# 2 N 4
|
358 |
+
bds = torch.stack([
|
359 |
+
t[0, :, 1 : -1, 0], t[0, :, 1 : -1, -1], t[0, :, 0, 1 : -1], t[0, :, -1, 1 : -1]
|
360 |
+
], dim=2)
|
361 |
+
|
362 |
+
pbd = a2.bitwise_not().float() * a1
|
363 |
+
# id of boundary p is on
|
364 |
+
pbd = torch.abs(0.5 * pbd[:, 0] + 2.5 * pbd[:, 1] + 0.5).long()
|
365 |
+
# ids of other boundaries
|
366 |
+
pbd = torch.stack([pbd + 1, pbd + 2, pbd + 3], dim=1) % 4
|
367 |
+
# print(pbd)
|
368 |
+
pbd = bds[..., pbd].permute(2, 0, 1, 3).reshape(B, 2, -1)
|
369 |
+
|
370 |
+
srcpts = torch.stack([
|
371 |
+
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1],
|
372 |
+
ps.to('cuda')
|
373 |
+
], dim=2)
|
374 |
+
srcpts = torch.cat([pbd, srcpts], dim=2).permute(0, 2, 1)
|
375 |
+
dstpts = torch.stack([
|
376 |
+
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1],
|
377 |
+
pt.to('cuda')
|
378 |
+
], dim=2)
|
379 |
+
dstpts = torch.cat([pbd, dstpts], dim=2).permute(0, 2, 1)
|
380 |
+
# print(srcpts)
|
381 |
+
# print(dstpts)
|
382 |
+
tgs = self.tpswarper(srcpts, dstpts)
|
383 |
+
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True)
|
384 |
+
|
385 |
+
nd = random.randint(1, 5)
|
386 |
+
for ii in range(nd):
|
387 |
+
|
388 |
+
pm = (torch.rand(B, 2) - 0.5) * 0.2
|
389 |
+
ps = (torch.rand(B, 2) - 0.5) * 1.95
|
390 |
+
pt = ps + pm
|
391 |
+
pt = pt.clamp(-0.975, 0.975)
|
392 |
+
|
393 |
+
srcpts = torch.cat([
|
394 |
+
t[..., -1, :], t[..., 0, :], t[..., 1 : -1, 0], t[..., 1 : -1, -1],
|
395 |
+
ps.unsqueeze(2).to('cuda')
|
396 |
+
], dim=2).permute(0, 2, 1)
|
397 |
+
dstpts = torch.cat([
|
398 |
+
t[..., -1, :], t[..., 0, :], t[..., 1 : -1, 0], t[..., 1 : -1, -1],
|
399 |
+
pt.unsqueeze(2).to('cuda')
|
400 |
+
], dim=2).permute(0, 2, 1)
|
401 |
+
tgs = self.tpswarper(srcpts, dstpts)
|
402 |
+
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True)
|
403 |
+
tgs = tt
|
404 |
+
|
405 |
+
# sample tgs to gen invtgs
|
406 |
+
num_sample = 512
|
407 |
+
# n = (H-2)*(W-2)
|
408 |
+
n = s * s
|
409 |
+
idx = torch.randperm(n)
|
410 |
+
idx = idx[:num_sample]
|
411 |
+
srcpts = tgs.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
412 |
+
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
413 |
+
invtgs = self.tpswarper(srcpts, dstpts)
|
414 |
+
return tgs, invtgs
|
415 |
+
|
416 |
+
def equal_spacing_interpolate(self, gs, s):
|
417 |
+
def equal_bd(x, s):
|
418 |
+
# x is B 2 n
|
419 |
+
v0 = x[..., :-1] # B 2 n-1
|
420 |
+
v = x[..., 1:] - x[..., :-1]
|
421 |
+
vn = v.norm(dim=1, keepdim=True)
|
422 |
+
v = v / vn
|
423 |
+
c = vn.sum(dim=2, keepdim=True) #B 1 1
|
424 |
+
a = vn / c
|
425 |
+
b = torch.cumsum(a, dim=2)
|
426 |
+
b = torch.cat((torch.zeros(B, 1, 1, device='cuda'), b[..., :-1]), dim=2)
|
427 |
+
|
428 |
+
t = torch.linspace(1e-5, 1 - 1e-5, s).view(1, s, 1).to('cuda')
|
429 |
+
t = t - b # B s n-1
|
430 |
+
# print(t)
|
431 |
+
|
432 |
+
tt = torch.cat((t, -torch.ones(B, s, 1, device='cuda')), dim=2) # B s n
|
433 |
+
tt = tt[..., 1:] * tt[..., :-1] # B s n-1
|
434 |
+
tt = (tt < 0).float()
|
435 |
+
d = torch.matmul(v0, tt.permute(0, 2, 1)) + torch.matmul(v, (tt * t).permute(0, 2, 1)) # B 2 s
|
436 |
+
# print(d)
|
437 |
+
return d
|
438 |
+
|
439 |
+
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
|
440 |
+
B = gs.size(0)
|
441 |
+
dst_cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]], dtype=torch.float, device='cuda').expand(B, -1, -1)
|
442 |
+
src_cn = torch.stack([gs[..., 0, 0], gs[..., 0, -1], gs[..., -1, -1], gs[..., -1, 0]], dim=2).permute(0, 2, 1)
|
443 |
+
M = self.pspwarper.pspmat(src_cn, dst_cn).detach()
|
444 |
+
invM = self.pspwarper.pspmat(dst_cn, src_cn).detach()
|
445 |
+
pgs = self.pspwarper(gs.permute(0, 2, 3, 1).reshape(B, -1, 2), M).reshape(B, s, s, 2).permute(0, 3, 1, 2)
|
446 |
+
t = [pgs[..., 0, :], pgs[..., -1, :], pgs[..., :, 0], pgs[..., :, -1]]
|
447 |
+
d = []
|
448 |
+
for x in t:
|
449 |
+
d.append(equal_bd(x, s))
|
450 |
+
pgs[..., 0, :] = d[0]
|
451 |
+
pgs[..., -1, :] = d[1]
|
452 |
+
pgs[..., :, 0] = d[2]
|
453 |
+
pgs[..., :, -1] = d[3]
|
454 |
+
gs = self.pspwarper(pgs.permute(0, 2, 3, 1).reshape(B, -1, 2), invM).reshape(B, s, s, 2).permute(0, 3, 1, 2)
|
455 |
+
gs = self.global_post_warp(gs, s)
|
456 |
+
return gs
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
class LocalLoss(nn.Module):
|
461 |
+
def __init__(self):
|
462 |
+
super().__init__()
|
463 |
+
|
464 |
+
def identity_loss(self, gs):
|
465 |
+
s = gs.size(2)
|
466 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s))
|
467 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand_as(gs)
|
468 |
+
loss = F.l1_loss(gs, t.detach())
|
469 |
+
return loss
|
470 |
+
|
471 |
+
def direct_loss(self, gs, invtgs):
|
472 |
+
loss = F.l1_loss(gs, invtgs.detach())
|
473 |
+
return loss
|
474 |
+
|
475 |
+
def warp_diff_loss(self, xd, xpd, tgs, invtgs):
|
476 |
+
loss_f = F.l1_loss(xd, F.grid_sample(tgs, xpd.permute(0, 2, 3, 1), align_corners=True).detach())
|
477 |
+
loss_b = F.l1_loss(xpd, F.grid_sample(invtgs, xd.permute(0, 2, 3, 1), align_corners=True).detach())
|
478 |
+
loss = loss_f + loss_b
|
479 |
+
return loss
|
480 |
+
|
481 |
+
|
482 |
+
class SupervisedLoss(nn.Module):
|
483 |
+
def __init__(self):
|
484 |
+
super().__init__()
|
485 |
+
s = 64
|
486 |
+
self.tpswarper = TpsWarp(s)
|
487 |
+
|
488 |
+
def fm2bm(self, fm):
|
489 |
+
# B 3 N N
|
490 |
+
# fm in [0, 1]
|
491 |
+
B, _, s, _ = fm.size()
|
492 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s))
|
493 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1)
|
494 |
+
srcpts = []
|
495 |
+
dstpts = []
|
496 |
+
for ii in range(B):
|
497 |
+
# mask
|
498 |
+
m = fm[ii, 2]
|
499 |
+
# z s
|
500 |
+
z = torch.nonzero(m, as_tuple=False)
|
501 |
+
num_sample = 512
|
502 |
+
n = z.size(0)
|
503 |
+
# print(n)
|
504 |
+
idx = torch.randperm(n)
|
505 |
+
idx = idx[:num_sample]
|
506 |
+
dstpts.append(t[ii, :, z[idx, 0], z[idx, 1]])
|
507 |
+
srcpts.append(fm[ii, : 2, z[idx, 0], z[idx, 1]] * 2 - 1)
|
508 |
+
srcpts = torch.stack(srcpts, dim=0).permute(0, 2, 1)
|
509 |
+
dstpts = torch.stack(dstpts, dim=0).permute(0, 2, 1)
|
510 |
+
# z = torch.nonzero(torch.abs(srcpts - 0) < 1e-5, as_tuple=False)
|
511 |
+
# print(z.size(0))
|
512 |
+
# print(dstpts.min())
|
513 |
+
# print(dstpts.max())
|
514 |
+
bm = self.tpswarper(srcpts, dstpts)
|
515 |
+
# bm[bm > 1] = 1
|
516 |
+
# bm[bm < -1] = -1
|
517 |
+
return bm
|
518 |
+
|
519 |
+
def gloss(self, x, y):
|
520 |
+
xbd = gs_to_bd(x)
|
521 |
+
# y = self.fm2bm(y)
|
522 |
+
y = F.interpolate(y, 64, mode='bilinear', align_corners=True)
|
523 |
+
|
524 |
+
ybd = gs_to_bd(y).detach()
|
525 |
+
loss = F.l1_loss(xbd, ybd.detach())
|
526 |
+
return loss
|
527 |
+
|
528 |
+
def lloss(self, x, y, dg):
|
529 |
+
# sample tgs to gen invtgs
|
530 |
+
B, _, s, _ = dg.size()
|
531 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s))
|
532 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1)
|
533 |
+
num_sample = 512
|
534 |
+
# n = (H-2)*(W-2)
|
535 |
+
n = s * s
|
536 |
+
idx = torch.randperm(n)
|
537 |
+
idx = idx[:num_sample]
|
538 |
+
# srcpts = gs_to_bd(tgs)
|
539 |
+
# srcpts = torch.cat([srcpts, tgs[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1)
|
540 |
+
srcpts = dg.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
541 |
+
# dstpts = gs_to_bd(t)
|
542 |
+
# dstpts = torch.cat([dstpts, t[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1)
|
543 |
+
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
544 |
+
invdg = self.tpswarper(srcpts, dstpts)
|
545 |
+
# compute dl = \phi(dg^-1, y)
|
546 |
+
dl = F.grid_sample(invdg, y.permute(0, 2, 3, 1), align_corners=True)
|
547 |
+
dl = F.interpolate(dl, 64, mode='bilinear', align_corners=True)
|
548 |
+
loss = F.l1_loss(x, dl.detach())
|
549 |
+
|
550 |
+
# y = F.interpolate(y, 64, mode='bilinear', align_corners=True)
|
551 |
+
# loss = F.l1_loss(F.grid_sample(dg.detach(), x.permute(0, 2, 3, 1), align_corners=True), y)
|
552 |
+
|
553 |
+
return loss, dl.detach()
|
networks/paperedge_cpu.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
# from torch.nn.utils import spectral_norm as SN
|
5 |
+
# from torchvision.models.densenet import _DenseBlock
|
6 |
+
from .tps_warp import TpsWarp, PspWarp
|
7 |
+
from functools import partial
|
8 |
+
# import plotly.graph_objects as go
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
torch.autograd.set_detect_anomaly(True)
|
14 |
+
|
15 |
+
|
16 |
+
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
17 |
+
"""3x3 convolution with padding"""
|
18 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
19 |
+
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
20 |
+
|
21 |
+
|
22 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
23 |
+
"""1x1 convolution"""
|
24 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
25 |
+
|
26 |
+
|
27 |
+
class BasicBlock(nn.Module):
|
28 |
+
expansion = 1
|
29 |
+
|
30 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
31 |
+
base_width=64, dilation=1, norm_layer=None):
|
32 |
+
super(BasicBlock, self).__init__()
|
33 |
+
if norm_layer is None:
|
34 |
+
norm_layer = nn.BatchNorm2d
|
35 |
+
if groups != 1 or base_width != 64:
|
36 |
+
raise ValueError(
|
37 |
+
'BasicBlock only supports groups=1 and base_width=64')
|
38 |
+
if dilation > 1:
|
39 |
+
raise NotImplementedError(
|
40 |
+
"Dilation > 1 not supported in BasicBlock")
|
41 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
42 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
43 |
+
self.bn1 = norm_layer(planes)
|
44 |
+
self.actv = nn.ReLU()
|
45 |
+
self.conv2 = conv3x3(planes, planes)
|
46 |
+
self.bn2 = norm_layer(planes)
|
47 |
+
self.downsample = downsample
|
48 |
+
self.stride = stride
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
identity = x
|
52 |
+
|
53 |
+
out = self.conv1(x)
|
54 |
+
out = self.bn1(out)
|
55 |
+
out = self.actv(out)
|
56 |
+
|
57 |
+
out = self.conv2(out)
|
58 |
+
out = self.bn2(out)
|
59 |
+
|
60 |
+
if self.downsample is not None:
|
61 |
+
identity = self.downsample(x)
|
62 |
+
|
63 |
+
out += identity
|
64 |
+
out = self.actv(out)
|
65 |
+
|
66 |
+
return out
|
67 |
+
|
68 |
+
|
69 |
+
def _make_layer(block, inplanes, planes, blocks, stride=1, dilate=False):
|
70 |
+
norm_layer = nn.BatchNorm2d
|
71 |
+
downsample = None
|
72 |
+
|
73 |
+
if stride != 1 or inplanes != planes * block.expansion:
|
74 |
+
downsample = nn.Sequential(
|
75 |
+
nn.Conv2d(inplanes, planes * block.expansion,
|
76 |
+
1, stride, bias=False),
|
77 |
+
norm_layer(planes * block.expansion),
|
78 |
+
)
|
79 |
+
|
80 |
+
layers = []
|
81 |
+
layers.append(block(inplanes, planes, stride,
|
82 |
+
downsample, norm_layer=norm_layer))
|
83 |
+
for _ in range(1, blocks):
|
84 |
+
layers.append(block(planes, planes,
|
85 |
+
norm_layer=norm_layer))
|
86 |
+
|
87 |
+
return nn.Sequential(*layers)
|
88 |
+
|
89 |
+
|
90 |
+
class Interpolate(nn.Module):
|
91 |
+
def __init__(self, size, mode):
|
92 |
+
super(Interpolate, self).__init__()
|
93 |
+
self.interp = nn.functional.interpolate
|
94 |
+
self.size = size
|
95 |
+
self.mode = mode
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
x = self.interp(x, size=self.size, mode=self.mode, align_corners=True)
|
99 |
+
return x
|
100 |
+
|
101 |
+
|
102 |
+
class GlobalWarper(nn.Module):
|
103 |
+
def __init__(self):
|
104 |
+
super(GlobalWarper, self).__init__()
|
105 |
+
modules = [
|
106 |
+
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
107 |
+
nn.BatchNorm2d(64),
|
108 |
+
nn.ReLU()
|
109 |
+
]
|
110 |
+
|
111 |
+
# encoder
|
112 |
+
planes = [64, 128, 256, 256, 512, 512]
|
113 |
+
strides = [2, 2, 2, 2, 2]
|
114 |
+
blocks = [1, 1, 1, 1, 1]
|
115 |
+
for k in range(len(planes) - 1):
|
116 |
+
modules.append(_make_layer(
|
117 |
+
BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k]))
|
118 |
+
self.encoder = nn.Sequential(*modules)
|
119 |
+
|
120 |
+
# decoder
|
121 |
+
modules = []
|
122 |
+
planes = [512, 512, 256, 128, 64]
|
123 |
+
strides = [2, 2, 2, 2]
|
124 |
+
# tsizes = [3, 5, 9, 17, 33]
|
125 |
+
blocks = [1, 1, 1, 1]
|
126 |
+
for k in range(len(planes) - 1):
|
127 |
+
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k],
|
128 |
+
mode='bilinear',
|
129 |
+
align_corners=True),
|
130 |
+
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
|
131 |
+
self.decoder = nn.Sequential(*modules)
|
132 |
+
|
133 |
+
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1))
|
134 |
+
self.to_warp[0].weight.data.fill_(0.0)
|
135 |
+
self.to_warp[0].bias.data.fill_(0.0)
|
136 |
+
|
137 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256))
|
138 |
+
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0)
|
139 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64),
|
140 |
+
torch.linspace(-1, 1, 64))
|
141 |
+
|
142 |
+
# note we mulitply a 0.9 so the network is initialized closer to GT.
|
143 |
+
# This is different from localwarper net
|
144 |
+
self.basegrid = torch.stack((ix * 0.9, iy * 0.9), dim=0).unsqueeze(0)
|
145 |
+
|
146 |
+
# # box filter
|
147 |
+
# ksize = 7
|
148 |
+
# p = int((ksize - 1) / 2)
|
149 |
+
# self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate')
|
150 |
+
# bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize
|
151 |
+
# self.box_filter = partial(F.conv2d, weight=bw)
|
152 |
+
|
153 |
+
def forward(self, im):
|
154 |
+
# print(self.to_warp[0].weight.data)
|
155 |
+
# coordconv
|
156 |
+
B = im.size(0)
|
157 |
+
c = self.coord.expand(B, -1, -1, -1).detach()
|
158 |
+
t = torch.cat((im, c), dim=1)
|
159 |
+
|
160 |
+
t = self.encoder(t)
|
161 |
+
t = self.decoder(t)
|
162 |
+
t = self.to_warp(t)
|
163 |
+
|
164 |
+
gs = t + self.basegrid
|
165 |
+
|
166 |
+
return gs
|
167 |
+
|
168 |
+
|
169 |
+
class LocalWarper(nn.Module):
|
170 |
+
def __init__(self):
|
171 |
+
super().__init__()
|
172 |
+
modules = [
|
173 |
+
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
174 |
+
nn.BatchNorm2d(64),
|
175 |
+
nn.ReLU()
|
176 |
+
]
|
177 |
+
# encoder
|
178 |
+
planes = [64, 128, 256, 256, 512, 512]
|
179 |
+
strides = [2, 2, 2, 2, 2]
|
180 |
+
blocks = [1, 1, 1, 1, 1]
|
181 |
+
for k in range(len(planes) - 1):
|
182 |
+
modules.append(_make_layer(
|
183 |
+
BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k]))
|
184 |
+
self.encoder = nn.Sequential(*modules)
|
185 |
+
|
186 |
+
# decoder
|
187 |
+
modules = []
|
188 |
+
planes = [512, 512, 256, 128, 64]
|
189 |
+
strides = [2, 2, 2, 2]
|
190 |
+
# tsizes = [3, 5, 9, 17, 33]
|
191 |
+
blocks = [1, 1, 1, 1]
|
192 |
+
for k in range(len(planes) - 1):
|
193 |
+
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True),
|
194 |
+
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
|
195 |
+
self.decoder = nn.Sequential(*modules)
|
196 |
+
|
197 |
+
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1))
|
198 |
+
self.to_warp[0].weight.data.fill_(0.0)
|
199 |
+
self.to_warp[0].bias.data.fill_(0.0)
|
200 |
+
|
201 |
+
iy, ix = torch.meshgrid(
|
202 |
+
torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256))
|
203 |
+
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0)
|
204 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64),
|
205 |
+
torch.linspace(-1, 1, 64))
|
206 |
+
self.basegrid = torch.stack((ix, iy), dim=0).unsqueeze(0)
|
207 |
+
|
208 |
+
# box filter
|
209 |
+
ksize = 5
|
210 |
+
p = int((ksize - 1) / 2)
|
211 |
+
self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate')
|
212 |
+
bw = torch.ones(1, 1, ksize, ksize) / ksize / ksize
|
213 |
+
self.box_filter = partial(F.conv2d, weight=bw)
|
214 |
+
|
215 |
+
def forward(self, im):
|
216 |
+
c = self.coord.expand(im.size(0), -1, -1, -1).detach()
|
217 |
+
t = torch.cat((im, c), dim=1)
|
218 |
+
|
219 |
+
# encoder
|
220 |
+
t = self.encoder(t)
|
221 |
+
t = self.decoder(t)
|
222 |
+
t = self.to_warp(t)
|
223 |
+
|
224 |
+
# # filter
|
225 |
+
# t = self.pad_replct(t)
|
226 |
+
# tx = self.box_filter(t[:, 0 : 1, ...])
|
227 |
+
# ty = self.box_filter(t[:, 1 : 2, ...])
|
228 |
+
# t = torch.cat((tx, ty), dim=1)
|
229 |
+
|
230 |
+
# bd condition
|
231 |
+
t[..., 1, 0, :] = 0
|
232 |
+
t[..., 1, -1, :] = 0
|
233 |
+
t[..., 0, :, 0] = 0
|
234 |
+
t[..., 0, :, -1] = 0
|
235 |
+
|
236 |
+
gs = t + self.basegrid
|
237 |
+
return gs
|
238 |
+
|
239 |
+
|
240 |
+
def gs_to_bd(gs):
|
241 |
+
# gs: B 2 H W
|
242 |
+
t = torch.cat([gs[..., 0, :], gs[..., -1, :], gs[..., 1: -1,
|
243 |
+
0], gs[..., 1: -1, -1]], dim=2).permute(0, 2, 1)
|
244 |
+
# t: B 2(W + H - 1) 2
|
245 |
+
return t
|
246 |
+
|
247 |
+
|
248 |
+
class MaskLoss(nn.Module):
|
249 |
+
def __init__(self, gsize):
|
250 |
+
super().__init__()
|
251 |
+
self.tpswarper = TpsWarp(gsize)
|
252 |
+
self.pspwarper = PspWarp()
|
253 |
+
# self.imsize = imsize
|
254 |
+
self.msk = torch.ones(1, 1, gsize, gsize)
|
255 |
+
self.cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]],
|
256 |
+
dtype=torch.float).unsqueeze(0)
|
257 |
+
|
258 |
+
def forward(self, gs, y, s):
|
259 |
+
# resize gs to s*s
|
260 |
+
B, _, s0, _ = gs.size()
|
261 |
+
tgs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
|
262 |
+
|
263 |
+
# use only the boundary points
|
264 |
+
srcpts = gs_to_bd(tgs)
|
265 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
266 |
+
torch.linspace(-1, 1, s))
|
267 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).expand_as(tgs)
|
268 |
+
dstpts = gs_to_bd(t)
|
269 |
+
|
270 |
+
tgs_f = self.tpswarper(srcpts, dstpts.detach())
|
271 |
+
ym = self.msk.expand_as(y)
|
272 |
+
yh = F.grid_sample(ym, tgs_f.permute(0, 2, 3, 1), align_corners=True)
|
273 |
+
loss_f = F.l1_loss(yh, y)
|
274 |
+
|
275 |
+
# forward/backward consistency loss
|
276 |
+
tgs_b = self.tpswarper(dstpts.detach(), srcpts)
|
277 |
+
# tgs_b = F.interpolate(tgs, s0, mode='bilinear', align_corners=True)
|
278 |
+
yy = F.grid_sample(y, tgs_b.permute(0, 2, 3, 1), align_corners=True)
|
279 |
+
loss_b = F.l1_loss(yy, ym)
|
280 |
+
|
281 |
+
return loss_f + loss_b, tgs_f
|
282 |
+
|
283 |
+
def _dist(self, x):
|
284 |
+
# adjacent point distance
|
285 |
+
# B, 2, n
|
286 |
+
x = torch.cat([x[..., 0: 1].detach(), x[..., 1: -1],
|
287 |
+
x[..., -1:].detach()], dim=2)
|
288 |
+
d = x[..., 1:] - x[..., :-1]
|
289 |
+
return torch.norm(d, dim=1)
|
290 |
+
|
291 |
+
# class TVLoss(nn.Module):
|
292 |
+
# def __init__(self):
|
293 |
+
# super(TVLoss, self).__init__()
|
294 |
+
|
295 |
+
# def forward(self, gs):
|
296 |
+
# loss = self._dist(gs[..., 1:], gs[..., :-1]) + self._dist(gs[..., 1:, :], gs[..., :-1, :])
|
297 |
+
# return loss
|
298 |
+
|
299 |
+
# def _dist(self, x1, x0):
|
300 |
+
# d = torch.norm(x1 - x0, dim=1, keepdim=True)
|
301 |
+
# d = torch.abs(d - torch.mean(d, dim=(2, 3), keepdim=True)).mean()
|
302 |
+
# return d
|
303 |
+
|
304 |
+
|
305 |
+
class WarperUtil(nn.Module):
|
306 |
+
def __init__(self, imsize):
|
307 |
+
super().__init__()
|
308 |
+
self.tpswarper = TpsWarp(imsize)
|
309 |
+
self.pspwarper = PspWarp()
|
310 |
+
self.s = imsize
|
311 |
+
|
312 |
+
def global_post_warp(self, gs, s):
|
313 |
+
# B, _, s0, _ = gs.size()
|
314 |
+
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
|
315 |
+
# gs = F.interpolate(gs, s0, mode='bilinear', align_corners=True)
|
316 |
+
# extract info
|
317 |
+
m1 = gs[..., 0, :]
|
318 |
+
m2 = gs[..., -1, :]
|
319 |
+
n1 = gs[..., 0]
|
320 |
+
n2 = gs[..., -1]
|
321 |
+
# for x
|
322 |
+
m1x_interval_ratio = m1[:, 0, 1:] - m1[:, 0, :-1]
|
323 |
+
m1x_interval_ratio /= m1x_interval_ratio.sum(dim=1, keepdim=True)
|
324 |
+
m2x_interval_ratio = m2[:, 0, 1:] - m2[:, 0, :-1]
|
325 |
+
m2x_interval_ratio /= m2x_interval_ratio.sum(dim=1, keepdim=True)
|
326 |
+
# interpolate all x ratio
|
327 |
+
t = torch.stack(
|
328 |
+
[m1x_interval_ratio, m2x_interval_ratio], dim=1).unsqueeze(1)
|
329 |
+
mx_interval_ratio = F.interpolate(
|
330 |
+
t, (s, m1x_interval_ratio.size(1)), mode='bilinear', align_corners=True)
|
331 |
+
mx_interval = (n2[..., 0: 1, :] - n1[..., 0: 1, :]
|
332 |
+
).unsqueeze(3) * mx_interval_ratio
|
333 |
+
# cumsum to x
|
334 |
+
dx = torch.cumsum(mx_interval, dim=3) + n1[..., 0: 1, :].unsqueeze(3)
|
335 |
+
dx = dx[..., 1: -1, :-1]
|
336 |
+
# for y
|
337 |
+
n1y_interval_ratio = n1[:, 1, 1:] - n1[:, 1, :-1]
|
338 |
+
n1y_interval_ratio /= n1y_interval_ratio.sum(dim=1, keepdim=True)
|
339 |
+
n2y_interval_ratio = n2[:, 1, 1:] - n2[:, 1, :-1]
|
340 |
+
n2y_interval_ratio /= n2y_interval_ratio.sum(dim=1, keepdim=True)
|
341 |
+
# interpolate all x ratio
|
342 |
+
t = torch.stack(
|
343 |
+
[n1y_interval_ratio, n2y_interval_ratio], dim=2).unsqueeze(1)
|
344 |
+
ny_interval_ratio = F.interpolate(
|
345 |
+
t, (n1y_interval_ratio.size(1), s), mode='bilinear', align_corners=True)
|
346 |
+
ny_interval = (m2[..., 1: 2, :] - m1[..., 1: 2, :]
|
347 |
+
).unsqueeze(2) * ny_interval_ratio
|
348 |
+
# cumsum to y
|
349 |
+
dy = torch.cumsum(ny_interval, dim=2) + m1[..., 1: 2, :].unsqueeze(2)
|
350 |
+
dy = dy[..., :-1, 1: -1]
|
351 |
+
ds = torch.cat((dx, dy), dim=1)
|
352 |
+
gs[..., 1: -1, 1: -1] = ds
|
353 |
+
return gs
|
354 |
+
|
355 |
+
def perturb_warp(self, dd):
|
356 |
+
B = dd.size(0)
|
357 |
+
s = self.s
|
358 |
+
# -0.2 to 0.2
|
359 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
360 |
+
torch.linspace(-1, 1, s))
|
361 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(
|
362 |
+
0).expand(B, -1, -1, -1)
|
363 |
+
|
364 |
+
tt = t.clone()
|
365 |
+
|
366 |
+
nd = random.randint(0, 4)
|
367 |
+
for ii in range(nd):
|
368 |
+
# define deformation on bd
|
369 |
+
pm = (torch.rand(B, 1) - 0.5) * 0.2
|
370 |
+
ps = (torch.rand(B, 1) - 0.5) * 1.95
|
371 |
+
pt = ps + pm
|
372 |
+
pt = pt.clamp(-0.975, 0.975)
|
373 |
+
# put it on one bd
|
374 |
+
# [1, 1] or [-1, 1] or [-1, -1] etc
|
375 |
+
a1 = (torch.rand(B, 2) > 0.5).float() * 2 - 1
|
376 |
+
# select one col for every row
|
377 |
+
a2 = torch.rand(B, 1) > 0.5
|
378 |
+
a2 = torch.cat([a2, a2.bitwise_not()], dim=1)
|
379 |
+
a3 = a1.clone()
|
380 |
+
a3[a2] = ps.view(-1)
|
381 |
+
ps = a3.clone()
|
382 |
+
a3[a2] = pt.view(-1)
|
383 |
+
pt = a3.clone()
|
384 |
+
# 2 N 4
|
385 |
+
bds = torch.stack([
|
386 |
+
t[0, :, 1: -1, 0], t[0, :, 1: -1, -1], t[0,
|
387 |
+
:, 0, 1: -1], t[0, :, -1, 1: -1]
|
388 |
+
], dim=2)
|
389 |
+
|
390 |
+
pbd = a2.bitwise_not().float() * a1
|
391 |
+
# id of boundary p is on
|
392 |
+
pbd = torch.abs(0.5 * pbd[:, 0] + 2.5 * pbd[:, 1] + 0.5).long()
|
393 |
+
# ids of other boundaries
|
394 |
+
pbd = torch.stack([pbd + 1, pbd + 2, pbd + 3], dim=1) % 4
|
395 |
+
# print(pbd)
|
396 |
+
pbd = bds[..., pbd].permute(2, 0, 1, 3).reshape(B, 2, -1)
|
397 |
+
|
398 |
+
srcpts = torch.stack([
|
399 |
+
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1],
|
400 |
+
ps
|
401 |
+
], dim=2)
|
402 |
+
srcpts = torch.cat([pbd, srcpts], dim=2).permute(0, 2, 1)
|
403 |
+
dstpts = torch.stack([
|
404 |
+
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1],
|
405 |
+
pt
|
406 |
+
], dim=2)
|
407 |
+
dstpts = torch.cat([pbd, dstpts], dim=2).permute(0, 2, 1)
|
408 |
+
# print(srcpts)
|
409 |
+
# print(dstpts)
|
410 |
+
tgs = self.tpswarper(srcpts, dstpts)
|
411 |
+
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True)
|
412 |
+
|
413 |
+
nd = random.randint(1, 5)
|
414 |
+
for ii in range(nd):
|
415 |
+
|
416 |
+
pm = (torch.rand(B, 2) - 0.5) * 0.2
|
417 |
+
ps = (torch.rand(B, 2) - 0.5) * 1.95
|
418 |
+
pt = ps + pm
|
419 |
+
pt = pt.clamp(-0.975, 0.975)
|
420 |
+
|
421 |
+
srcpts = torch.cat([
|
422 |
+
t[..., -1, :], t[..., 0, :], t[..., 1: -1, 0], t[..., 1: -1, -1],
|
423 |
+
ps.unsqueeze(2)
|
424 |
+
], dim=2).permute(0, 2, 1)
|
425 |
+
dstpts = torch.cat([
|
426 |
+
t[..., -1, :], t[..., 0, :], t[..., 1: -1, 0], t[..., 1: -1, -1],
|
427 |
+
pt.unsqueeze(2)
|
428 |
+
], dim=2).permute(0, 2, 1)
|
429 |
+
tgs = self.tpswarper(srcpts, dstpts)
|
430 |
+
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True)
|
431 |
+
tgs = tt
|
432 |
+
|
433 |
+
# sample tgs to gen invtgs
|
434 |
+
num_sample = 512
|
435 |
+
# n = (H-2)*(W-2)
|
436 |
+
n = s * s
|
437 |
+
idx = torch.randperm(n)
|
438 |
+
idx = idx[:num_sample]
|
439 |
+
srcpts = tgs.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
440 |
+
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
441 |
+
invtgs = self.tpswarper(srcpts, dstpts)
|
442 |
+
return tgs, invtgs
|
443 |
+
|
444 |
+
def equal_spacing_interpolate(self, gs, s):
|
445 |
+
def equal_bd(x, s):
|
446 |
+
# x is B 2 n
|
447 |
+
v0 = x[..., :-1] # B 2 n-1
|
448 |
+
v = x[..., 1:] - x[..., :-1]
|
449 |
+
vn = v.norm(dim=1, keepdim=True)
|
450 |
+
v = v / vn
|
451 |
+
c = vn.sum(dim=2, keepdim=True) # B 1 1
|
452 |
+
a = vn / c
|
453 |
+
b = torch.cumsum(a, dim=2)
|
454 |
+
b = torch.cat((torch.zeros(B, 1, 1), b[..., :-1]), dim=2)
|
455 |
+
|
456 |
+
t = torch.linspace(1e-5, 1 - 1e-5, s).view(1, s, 1)
|
457 |
+
t = t - b # B s n-1
|
458 |
+
# print(t)
|
459 |
+
|
460 |
+
tt = torch.cat((t, -torch.ones(B, s, 1)), dim=2) # B s n
|
461 |
+
tt = tt[..., 1:] * tt[..., :-1] # B s n-1
|
462 |
+
tt = (tt < 0).float()
|
463 |
+
d = torch.matmul(v0, tt.permute(0, 2, 1)) + \
|
464 |
+
torch.matmul(v, (tt * t).permute(0, 2, 1)) # B 2 s
|
465 |
+
return d
|
466 |
+
|
467 |
+
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
|
468 |
+
B = gs.size(0)
|
469 |
+
dst_cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]],
|
470 |
+
dtype=torch.float).expand(B, -1, -1)
|
471 |
+
src_cn = torch.stack([gs[..., 0, 0], gs[..., 0, -1],
|
472 |
+
gs[..., -1, -1], gs[..., -1, 0]], dim=2).permute(0, 2, 1)
|
473 |
+
M = self.pspwarper.pspmat(src_cn, dst_cn).detach()
|
474 |
+
invM = self.pspwarper.pspmat(dst_cn, src_cn).detach()
|
475 |
+
pgs = self.pspwarper(gs.permute(0, 2, 3, 1).reshape(
|
476 |
+
B, -1, 2), M).reshape(B, s, s, 2).permute(0, 3, 1, 2)
|
477 |
+
t = [pgs[..., 0, :], pgs[..., -1, :], pgs[..., :, 0], pgs[..., :, -1]]
|
478 |
+
d = []
|
479 |
+
for x in t:
|
480 |
+
d.append(equal_bd(x, s))
|
481 |
+
pgs[..., 0, :] = d[0]
|
482 |
+
pgs[..., -1, :] = d[1]
|
483 |
+
pgs[..., :, 0] = d[2]
|
484 |
+
pgs[..., :, -1] = d[3]
|
485 |
+
gs = self.pspwarper(pgs.permute(0, 2, 3, 1).reshape(
|
486 |
+
B, -1, 2), invM).reshape(B, s, s, 2).permute(0, 3, 1, 2)
|
487 |
+
gs = self.global_post_warp(gs, s)
|
488 |
+
return gs
|
489 |
+
|
490 |
+
|
491 |
+
class LocalLoss(nn.Module):
|
492 |
+
def __init__(self):
|
493 |
+
super().__init__()
|
494 |
+
|
495 |
+
def identity_loss(self, gs):
|
496 |
+
s = gs.size(2)
|
497 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
498 |
+
torch.linspace(-1, 1, s))
|
499 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(0).expand_as(gs)
|
500 |
+
loss = F.l1_loss(gs, t.detach())
|
501 |
+
return loss
|
502 |
+
|
503 |
+
def direct_loss(self, gs, invtgs):
|
504 |
+
loss = F.l1_loss(gs, invtgs.detach())
|
505 |
+
return loss
|
506 |
+
|
507 |
+
def warp_diff_loss(self, xd, xpd, tgs, invtgs):
|
508 |
+
loss_f = F.l1_loss(xd, F.grid_sample(
|
509 |
+
tgs, xpd.permute(0, 2, 3, 1), align_corners=True).detach())
|
510 |
+
loss_b = F.l1_loss(xpd, F.grid_sample(
|
511 |
+
invtgs, xd.permute(0, 2, 3, 1), align_corners=True).detach())
|
512 |
+
loss = loss_f + loss_b
|
513 |
+
return loss
|
514 |
+
|
515 |
+
|
516 |
+
class SupervisedLoss(nn.Module):
|
517 |
+
def __init__(self):
|
518 |
+
super().__init__()
|
519 |
+
s = 64
|
520 |
+
self.tpswarper = TpsWarp(s)
|
521 |
+
|
522 |
+
def fm2bm(self, fm):
|
523 |
+
# B 3 N N
|
524 |
+
# fm in [0, 1]
|
525 |
+
B, _, s, _ = fm.size()
|
526 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
527 |
+
torch.linspace(-1, 1, s))
|
528 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(
|
529 |
+
0).expand(B, -1, -1, -1)
|
530 |
+
srcpts = []
|
531 |
+
dstpts = []
|
532 |
+
for ii in range(B):
|
533 |
+
# mask
|
534 |
+
m = fm[ii, 2]
|
535 |
+
# z s
|
536 |
+
z = torch.nonzero(m, as_tuple=False)
|
537 |
+
num_sample = 512
|
538 |
+
n = z.size(0)
|
539 |
+
# print(n)
|
540 |
+
idx = torch.randperm(n)
|
541 |
+
idx = idx[:num_sample]
|
542 |
+
dstpts.append(t[ii, :, z[idx, 0], z[idx, 1]])
|
543 |
+
srcpts.append(fm[ii, : 2, z[idx, 0], z[idx, 1]] * 2 - 1)
|
544 |
+
srcpts = torch.stack(srcpts, dim=0).permute(0, 2, 1)
|
545 |
+
dstpts = torch.stack(dstpts, dim=0).permute(0, 2, 1)
|
546 |
+
# z = torch.nonzero(torch.abs(srcpts - 0) < 1e-5, as_tuple=False)
|
547 |
+
# print(z.size(0))
|
548 |
+
# print(dstpts.min())
|
549 |
+
# print(dstpts.max())
|
550 |
+
bm = self.tpswarper(srcpts, dstpts)
|
551 |
+
# bm[bm > 1] = 1
|
552 |
+
# bm[bm < -1] = -1
|
553 |
+
return bm
|
554 |
+
|
555 |
+
def gloss(self, x, y):
|
556 |
+
xbd = gs_to_bd(x)
|
557 |
+
# y = self.fm2bm(y)
|
558 |
+
y = F.interpolate(y, 64, mode='bilinear', align_corners=True)
|
559 |
+
|
560 |
+
ybd = gs_to_bd(y).detach()
|
561 |
+
loss = F.l1_loss(xbd, ybd.detach())
|
562 |
+
return loss
|
563 |
+
|
564 |
+
def lloss(self, x, y, dg):
|
565 |
+
# sample tgs to gen invtgs
|
566 |
+
B, _, s, _ = dg.size()
|
567 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
568 |
+
torch.linspace(-1, 1, s))
|
569 |
+
t = torch.stack((ix, iy), dim=0).unsqueeze(
|
570 |
+
0).expand(B, -1, -1, -1)
|
571 |
+
num_sample = 512
|
572 |
+
# n = (H-2)*(W-2)
|
573 |
+
n = s * s
|
574 |
+
idx = torch.randperm(n)
|
575 |
+
idx = idx[:num_sample]
|
576 |
+
# srcpts = gs_to_bd(tgs)
|
577 |
+
# srcpts = torch.cat([srcpts, tgs[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1)
|
578 |
+
srcpts = dg.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
579 |
+
# dstpts = gs_to_bd(t)
|
580 |
+
# dstpts = torch.cat([dstpts, t[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1)
|
581 |
+
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
|
582 |
+
invdg = self.tpswarper(srcpts, dstpts)
|
583 |
+
# compute dl = \phi(dg^-1, y)
|
584 |
+
dl = F.grid_sample(invdg, y.permute(0, 2, 3, 1), align_corners=True)
|
585 |
+
dl = F.interpolate(dl, 64, mode='bilinear', align_corners=True)
|
586 |
+
loss = F.l1_loss(x, dl.detach())
|
587 |
+
|
588 |
+
# y = F.interpolate(y, 64, mode='bilinear', align_corners=True)
|
589 |
+
# loss = F.l1_loss(F.grid_sample(dg.detach(), x.permute(0, 2, 3, 1), align_corners=True), y)
|
590 |
+
|
591 |
+
return loss, dl.detach()
|
networks/tps_warp.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class TpsWarp(nn.Module):
|
7 |
+
def __init__(self, s):
|
8 |
+
super(TpsWarp, self).__init__()
|
9 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
10 |
+
torch.linspace(-1, 1, s))
|
11 |
+
self.gs = torch.stack((ix, iy), dim=2).reshape((1, -1, 2))
|
12 |
+
self.sz = s
|
13 |
+
|
14 |
+
def forward(self, src, dst):
|
15 |
+
# src and dst are B.n.2
|
16 |
+
B, n, _ = src.size()
|
17 |
+
# B.n.1.2
|
18 |
+
delta = src.unsqueeze(2)
|
19 |
+
delta = delta - delta.permute(0, 2, 1, 3)
|
20 |
+
# B.n.n
|
21 |
+
K = delta.norm(dim=3)
|
22 |
+
# Rsq = torch.sum(delta**2, dim=3)
|
23 |
+
# Rsq += torch.eye(n)
|
24 |
+
# Rsq[Rsq == 0] = 1.
|
25 |
+
# K = 0.5 * Rsq * torch.log(Rsq)
|
26 |
+
# c = -150
|
27 |
+
# K = torch.exp(c * Rsq)
|
28 |
+
# K = torch.abs(Rsq - 0.5) - 0.5
|
29 |
+
# WARNING: TORCH.SQRT HAS NAN GRAD AT 0
|
30 |
+
# K = torch.sqrt(Rsq)
|
31 |
+
# print(K)
|
32 |
+
# K[torch.isnan(K)] = 0.
|
33 |
+
P = torch.cat((torch.ones((B, n, 1)), src), 2)
|
34 |
+
L = torch.cat((K, P), 2)
|
35 |
+
t = torch.cat(
|
36 |
+
(P.permute(0, 2, 1), torch.zeros((B, 3, 3))), 2)
|
37 |
+
L = torch.cat((L, t), 1)
|
38 |
+
# LInv = L.inverse()
|
39 |
+
# # wv is B.n+3.2
|
40 |
+
# wv = torch.matmul(LInv, torch.cat((dst, torch.zeros((B, 3, 2))), 1))
|
41 |
+
# the above implementation has stability problem near the boundaries
|
42 |
+
wv = torch.solve(
|
43 |
+
torch.cat((dst, torch.zeros((B, 3, 2))), 1), L)[0]
|
44 |
+
|
45 |
+
# get the grid sampler
|
46 |
+
s = self.gs.size(1)
|
47 |
+
gs = self.gs
|
48 |
+
delta = gs.unsqueeze(2)
|
49 |
+
delta = delta - src.unsqueeze(1)
|
50 |
+
K = delta.norm(dim=3)
|
51 |
+
# Rsq = torch.sum(delta**2, dim=3)
|
52 |
+
# K = torch.exp(c * Rsq)
|
53 |
+
# Rsq[Rsq == 0] = 1.
|
54 |
+
# K = 0.5 * Rsq * torch.log(Rsq)
|
55 |
+
# K = torch.abs(Rsq - 0.5) - 0.5
|
56 |
+
# K = torch.sqrt(Rsq)
|
57 |
+
# K[torch.isnan(K)] = 0.
|
58 |
+
gs = gs.expand(B, -1, -1)
|
59 |
+
P = torch.cat((torch.ones((B, s, 1)), gs), 2)
|
60 |
+
L = torch.cat((K, P), 2)
|
61 |
+
gs = torch.matmul(L, wv)
|
62 |
+
return gs.reshape(B, self.sz, self.sz, 2).permute(0, 3, 1, 2)
|
63 |
+
|
64 |
+
|
65 |
+
class PspWarp(nn.Module):
|
66 |
+
def __init__(self):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
def pspmat(self, src, dst):
|
70 |
+
# B, 4, 2
|
71 |
+
B, _, _ = src.size()
|
72 |
+
s = torch.cat([
|
73 |
+
torch.cat([src,
|
74 |
+
torch.ones((B, 4, 1)),
|
75 |
+
torch.zeros((B, 4, 3)),
|
76 |
+
-dst[..., 0: 1] * src[..., 0: 1], -dst[..., 0: 1] * src[..., 1: 2]], dim=2),
|
77 |
+
torch.cat([torch.zeros((B, 4, 3)), src, torch.ones((B, 4, 1)),
|
78 |
+
-dst[..., 1: 2] * src[..., 0: 1], -dst[..., 1: 2] * src[..., 1: 2]], dim=2)
|
79 |
+
], dim=1)
|
80 |
+
t = torch.cat([dst[..., 0: 1], dst[..., 1: 2]], dim=1)
|
81 |
+
# M = s.inverse() @ t
|
82 |
+
M = torch.solve(t, s)[0]
|
83 |
+
# M is B 8 1
|
84 |
+
return M
|
85 |
+
|
86 |
+
def forward(self, xy, M):
|
87 |
+
# permute M to B 1 8
|
88 |
+
M = M.permute(0, 2, 1)
|
89 |
+
t = M[..., 6] * xy[..., 0] + M[..., 7] * xy[..., 1] + 1
|
90 |
+
u = (M[..., 0] * xy[..., 0] + M[..., 1] * xy[..., 1] + M[..., 2]) / t
|
91 |
+
v = (M[..., 3] * xy[..., 0] + M[..., 4] * xy[..., 1] + M[..., 5]) / t
|
92 |
+
return torch.stack((u, v), dim=2)
|
93 |
+
# for ii in range(4):
|
94 |
+
# xy = src[:, ii : ii + 1, :]
|
95 |
+
# uv = dst[:, ii : ii + 1, :]
|
96 |
+
# t0 = [xy, torch.ones((B, 1, 1)), torch.zeros((B, 1, 3)), -uv[..., 0] * xy[..., 0], -uv[..., 0] * xy[..., 1]]
|
97 |
+
# t0 = torch.cat(t0, dim=2)
|
98 |
+
# t1 = [torch.zeros((B, 1, 3)), xy, torch.ones((B, 1, 1)), -uv[..., 1] * xy[..., 0], -uv[..., 1] * xy[..., 1]]
|
99 |
+
# t1 = torch.cat(t1, dim=2)
|
100 |
+
|
101 |
+
|
102 |
+
class IdwWarp(nn.Module):
|
103 |
+
# inverse distance weighting
|
104 |
+
def __init__(self, s):
|
105 |
+
super().__init__()
|
106 |
+
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
|
107 |
+
torch.linspace(-1, 1, s))
|
108 |
+
self.gs = torch.stack((ix, iy), dim=2).reshape((1, -1, 2)).to('cuda')
|
109 |
+
self.s = s
|
110 |
+
|
111 |
+
def forward(self, src, dst):
|
112 |
+
# B n 2
|
113 |
+
B, n, _ = src.size()
|
114 |
+
# B.n.1.2
|
115 |
+
delta = src.unsqueeze(2)
|
116 |
+
delta = delta - self.gs.unsqueeze(0)
|
117 |
+
# B.n.K
|
118 |
+
p = 1
|
119 |
+
Rsq = torch.sum(delta**2, dim=3)**p
|
120 |
+
w = 1 / Rsq
|
121 |
+
# turn inf to [0...1...0]
|
122 |
+
t = torch.isinf(w)
|
123 |
+
idx = t.any(dim=1).nonzero()
|
124 |
+
w[idx[:, 0], :, idx[:, 1]] = t[idx[:, 0], :, idx[:, 1]].float()
|
125 |
+
wwx = w * dst[..., 0: 1]
|
126 |
+
wwx = wwx.sum(dim=1) / w.sum(dim=1)
|
127 |
+
wwy = w * dst[..., 1: 2]
|
128 |
+
wwy = wwy.sum(dim=1) / w.sum(dim=1)
|
129 |
+
# print(wwy.size())
|
130 |
+
gs = torch.stack((wwx, wwy), dim=2).reshape(
|
131 |
+
B, self.s, self.s, 2).permute(0, 3, 1, 2)
|
132 |
+
return gs
|
133 |
+
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
import cv2
|
137 |
+
import numpy as np
|
138 |
+
from hdf5storage import loadmat
|
139 |
+
from visdom import Visdom
|
140 |
+
vis = Visdom(port=10086)
|
141 |
+
|
142 |
+
# bm_path = '/nfs/bigdisk/sagnik/swat3d/bm/7/2_471_7-ec_Page_375-5LI0001.mat'
|
143 |
+
# img_path = '/nfs/bigdisk/sagnik/swat3d/img/7/2_471_7-ec_Page_375-5LI0001.png'
|
144 |
+
|
145 |
+
# bm = loadmat(bm_path)['bm']
|
146 |
+
# bm = (bm - 224) / 224.
|
147 |
+
# bm = cv2.resize(bm, (64, 64), cv2.INTER_LINEAR).astype(np.float32)
|
148 |
+
|
149 |
+
# im = cv2.imread(img_path) / 255.
|
150 |
+
# im = im[..., ::-1].copy()
|
151 |
+
# im = cv2.resize(im, (256, 256), cv2.INTER_AREA).astype(np.float32)
|
152 |
+
# im = torch.from_numpy(im.transpose(2, 0, 1)).unsqueeze(0).to('cuda')
|
153 |
+
|
154 |
+
# x = np.random.choice(np.arange(64), 50, False)
|
155 |
+
# y = np.random.choice(np.arange(64), 50, False)
|
156 |
+
|
157 |
+
# src = torch.tensor([[x, y]], dtype=torch.float32).permute(0, 2, 1)
|
158 |
+
# src = (src - 32) / 32.
|
159 |
+
# dst = torch.from_numpy(bm[y, x, :]).unsqueeze(0).to('cuda')
|
160 |
+
|
161 |
+
# # print(src.size())
|
162 |
+
# # print(dst.size())
|
163 |
+
|
164 |
+
# tpswarp = TpsWarp(64)
|
165 |
+
# import time
|
166 |
+
# t = time.time()
|
167 |
+
# for _ in range(100):
|
168 |
+
# gs = tpswarp(src, dst)
|
169 |
+
# print(f'time:{time.time() - t}')
|
170 |
+
# gs = gs.view(-1, 64, 64, 2)
|
171 |
+
|
172 |
+
# print(gs.size())
|
173 |
+
# bm2x2 = F.interpolate(gs.permute(0, 3, 1, 2), size=256, mode='bilinear', align_corners=True).permute(0, 2, 3, 1)
|
174 |
+
|
175 |
+
# rim = F.grid_sample(im, bm2x2, align_corners=True)
|
176 |
+
# vis.images(rim, win='sk3')
|
177 |
+
tpswarp = TpsWarp(16)
|
178 |
+
import matplotlib.pyplot as plt
|
179 |
+
cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1], [-0.5, -1],
|
180 |
+
[0, -1], [0.5, -1]], dtype=torch.float).unsqueeze(0)
|
181 |
+
pn = torch.tensor([[-1, -0.5], [1, -1], [1, 1], [-1, 0.5],
|
182 |
+
[-0.5, -1], [0, -0.5], [0.5, -1]]).unsqueeze(0)
|
183 |
+
pspwarp = PspWarp()
|
184 |
+
# # print(cn.dtype)
|
185 |
+
M = pspwarp.pspmat(cn[..., 0: 4, :], pn[..., 0: 4, :])
|
186 |
+
invM = pspwarp.pspmat(pn[..., 0: 4, :], cn[..., 0: 4, :])
|
187 |
+
# iy, ix = torch.meshgrid(torch.linspace(-1, 1, 8), torch.linspace(-1, 1, 8))
|
188 |
+
# gs = torch.stack((ix, iy), dim=2).reshape((1, -1, 2)).to('cuda')
|
189 |
+
# t = pspwarp(gs, M).reshape(8, 8, 2).detach().cpu().numpy()
|
190 |
+
# print(M)
|
191 |
+
|
192 |
+
t = tpswarp(cn, pn)
|
193 |
+
from tsdeform import WarperUtil
|
194 |
+
wu = WarperUtil(16)
|
195 |
+
tgs = wu.global_post_warp(t, 16, invM, M)
|
196 |
+
|
197 |
+
t = tgs.permute(0, 2, 3, 1)[0].detach().cpu().numpy()
|
198 |
+
|
199 |
+
plt.clf()
|
200 |
+
plt.pcolormesh(t[..., 0], t[..., 1],
|
201 |
+
np.zeros_like(t[..., 0]), edgecolors='r')
|
202 |
+
plt.gca().invert_yaxis()
|
203 |
+
plt.gca().axis('equal')
|
204 |
+
vis.matplot(plt, env='grid', win='mpl')
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv_python
|
2 |
+
scipy
|
3 |
+
torch
|
4 |
+
numpy>=1.20.3
|
5 |
+
hdf5storage>=0.1.18
|
utils/__init__.py
ADDED
File without changes
|
utils/handlers.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import visdom
|
2 |
+
import numpy as np
|
3 |
+
import csv
|
4 |
+
import torch
|
5 |
+
from datetime import datetime
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
+
import random
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
|
12 |
+
class VisPlot(object):
|
13 |
+
def __init__(self, port=10086, env='main'):
|
14 |
+
self.vis = visdom.Visdom(port=port)
|
15 |
+
self.env = env
|
16 |
+
self.vis.close('loss', env=env)
|
17 |
+
|
18 |
+
def plot_loss(self, engine, monitor_metrics, win='loss'):
|
19 |
+
self.vis.line(X=np.array([engine.state.iteration]),
|
20 |
+
# NOTE because we use RunningAverage to log the loss, we can retrieve these numbers from state.metrics
|
21 |
+
Y=np.array([[engine.state.metrics[x]
|
22 |
+
for x in monitor_metrics]]),
|
23 |
+
env=self.env, win=win, update='append')
|
24 |
+
|
25 |
+
def plot_imgs(self, imgs, win='img', imhistory=False):
|
26 |
+
imgs = np.clip(imgs, 1e-5, 1 - 1e-5)
|
27 |
+
self.vis.images(imgs, env=self.env, win=win, opts={
|
28 |
+
'caption': win, 'store_history': imhistory})
|
29 |
+
|
30 |
+
def plot_meshes(self, ms, win='ms'):
|
31 |
+
plt.close()
|
32 |
+
n = ms.shape[0]
|
33 |
+
nr = (n - 1) // 8 + 1
|
34 |
+
fig, axs = plt.subplots(1, 2)
|
35 |
+
axs = axs.ravel()
|
36 |
+
# fig.clf()
|
37 |
+
|
38 |
+
c = np.arange(256) / 255.0
|
39 |
+
c = c.reshape((16, 16))
|
40 |
+
for ii in range(2):
|
41 |
+
t = ms[ii]
|
42 |
+
axs[ii].pcolormesh(t[..., 0], t[..., 1], c,
|
43 |
+
cmap='YlGnBu', edgecolors='black')
|
44 |
+
axs[ii].set_xlim(-1, 1)
|
45 |
+
axs[ii].set_ylim(-1, 1)
|
46 |
+
axs[ii].invert_yaxis()
|
47 |
+
# axs[ii].axis('equal', 'box')
|
48 |
+
axs[ii].set_aspect('equal', 'box')
|
49 |
+
# fig, axs = plt.subplots(1, 2)
|
50 |
+
# axs = axs.ravel()
|
51 |
+
# t = ms[0]
|
52 |
+
# axs[0].pcolormesh(t[..., 0], t[..., 1], np.zeros_like(t[..., 0]), edgecolors='r')
|
53 |
+
# axs[0].invert_yaxis()
|
54 |
+
# axs[0].axis('equal', 'box')
|
55 |
+
fig.tight_layout()
|
56 |
+
self.vis.matplot(fig, env=self.env, win=win)
|
57 |
+
|
58 |
+
|
59 |
+
class CSVLogger(object):
|
60 |
+
def __init__(self, filename):
|
61 |
+
self.filename = filename
|
62 |
+
|
63 |
+
def __call__(self, engine, monitor_metrics):
|
64 |
+
with open(self.filename, 'a') as csvfile:
|
65 |
+
writer = csv.writer(csvfile, delimiter=',')
|
66 |
+
date_time = datetime.now().strftime('%m/%d/%Y-%H:%M:%S')
|
67 |
+
writer.writerow([date_time, engine.state.iteration] +
|
68 |
+
[engine.state.metrics[x] for x in monitor_metrics])
|
69 |
+
|
70 |
+
# class SaveRes(object):
|
71 |
+
# def __init__(self, resdir='./'):
|
72 |
+
# self.yp = []
|
73 |
+
# self.resdir = resdir
|
74 |
+
|
75 |
+
# def update(self, engine):
|
76 |
+
# self.yp.append(engine.state.output[0][1].cpu().numpy())
|
77 |
+
|
78 |
+
# def save(self, epoch_id):
|
79 |
+
# self.yp = np.concatenate(self.yp)
|
80 |
+
# savemat(os.path.join(self.resdir, 't{}.mat'.format(epoch_id)), \
|
81 |
+
# {'yp': self.yp})
|
82 |
+
# self.yp = []
|
83 |
+
# # self.yp = []
|
84 |
+
# # self.yg = []
|