# -*- encoding: utf-8 -*- import copy import os os.system('pip install -r requirements.txt') import time from pathlib import Path import cv2 import numpy as np import torch import torch.nn.functional as F from networks.paperedge_cpu import GlobalWarper, LocalWarper, WarperUtil import gradio as gr cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) class PaperEdge(object): def __init__(self, enet_path, tnet_path, device, dst_dir) -> None: self.device = device self.dst_dir = dst_dir self.netG = GlobalWarper().to(device) netG_state = torch.load(enet_path, map_location=device)['G'] self.netG.load_state_dict(netG_state) self.netG.eval() self.netL = LocalWarper().to(device) netL_state = torch.load(tnet_path, map_location=device)['L'] self.netL.load_state_dict(netL_state) self.netL.eval() self.warpUtil = WarperUtil(64).to(device) @staticmethod def load_img(img_path): im = cv2.imread(img_path).astype(np.float32) / 255.0 im = im[:, :, (2, 1, 0)] im = cv2.resize(im, (256, 256), interpolation=cv2.INTER_AREA) im = torch.from_numpy(np.transpose(im, (2, 0, 1))) return im def __call__(self, img_path): time_stamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) gs_d, ls_d = None, None with torch.no_grad(): x = self.load_img(img_path) x = x.unsqueeze(0).to(self.device) d = self.netG(x) d = self.warpUtil.global_post_warp(d, 64) gs_d = copy.deepcopy(d) d = F.interpolate(d, size=256, mode='bilinear', align_corners=True) y0 = F.grid_sample(x, d.permute(0, 2, 3, 1), align_corners=True) ls_d = self.netL(y0) ls_d = F.interpolate(ls_d, size=256, mode='bilinear', align_corners=True) ls_d = ls_d.clamp(-1.0, 1.0) im = cv2.imread(img_path).astype(np.float32) / 255.0 im = torch.from_numpy(np.transpose(im, (2, 0, 1))) im = im.to(self.device).unsqueeze(0) gs_d = F.interpolate(gs_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True) gs_y = F.grid_sample(im, gs_d.permute(0, 2, 3, 1), align_corners=True).detach() ls_d = F.interpolate(ls_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True) ls_y = F.grid_sample(gs_y, ls_d.permute(0, 2, 3, 1), align_corners=True).detach() ls_y = ls_y.squeeze().permute(1, 2, 0).cpu().numpy() save_path = f'{self.dst_dir}/{time_stamp}.png' cv2.imwrite(save_path, ls_y * 255.) return save_path def inference(img_path): save_img_path = paper_edge(img_path) return save_img_path enet_path = 'models/G_w_checkpoint_13820.pt' tnet_path = 'models/L_w_checkpoint_27640.pt' device = torch.device('cpu') dst_dir = Path('inference/') if not dst_dir.exists(): dst_dir.mkdir(parents=True, exist_ok=True) paper_edge = PaperEdge(enet_path, tnet_path, device, dst_dir) title = 'PaperEdge Demo' description = 'This is the demo for the paper "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022). Github repo: https://github.com/cvlab-stonybrook/PaperEdge' css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" examples = [['images/1.jpg']] gr.Interface( inference, inputs=gr.inputs.Image(type='filepath', label='Input'), outputs=[ gr.outputs.Image(type='filepath', label='Output_image'), ], title=title, description=description, examples=examples, css=css, allow_flagging='never', ).launch(debug=True, enable_queue=True)