# -*- encoding: utf-8 -*- import argparse import copy import time from pathlib import Path import cv2 import numpy as np import torch import torch.nn.functional as F from networks.paperedge_cpu import GlobalWarper, LocalWarper, WarperUtil cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) class PaperEdge(object): def __init__(self, enet_path, tnet_path, device) -> None: self.device = device self.netG = GlobalWarper().to(device) netG_state = torch.load(enet_path, map_location=device)['G'] self.netG.load_state_dict(netG_state) self.netG.eval() self.netL = LocalWarper().to(device) netL_state = torch.load(tnet_path, map_location=device)['L'] self.netL.load_state_dict(netL_state) self.netL.eval() self.warpUtil = WarperUtil(64).to(device) @staticmethod def load_img(img_path): im = cv2.imread(img_path).astype(np.float32) / 255.0 im = im[:, :, (2, 1, 0)] im = cv2.resize(im, (256, 256), interpolation=cv2.INTER_AREA) im = torch.from_numpy(np.transpose(im, (2, 0, 1))) return im def infer(self, img_path): gs_d, ls_d = None, None with torch.no_grad(): x = self.load_img(img_path) x = x.unsqueeze(0).to(self.device) d = self.netG(x) d = self.warpUtil.global_post_warp(d, 64) gs_d = copy.deepcopy(d) d = F.interpolate(d, size=256, mode='bilinear', align_corners=True) y0 = F.grid_sample(x, d.permute(0, 2, 3, 1), align_corners=True) ls_d = self.netL(y0) ls_d = F.interpolate(ls_d, size=256, mode='bilinear', align_corners=True) ls_d = ls_d.clamp(-1.0, 1.0) im = cv2.imread(img_path).astype(np.float32) / 255.0 im = torch.from_numpy(np.transpose(im, (2, 0, 1))) im = im.to(self.device).unsqueeze(0) gs_d = F.interpolate(gs_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True) gs_y = F.grid_sample(im, gs_d.permute(0, 2, 3, 1), align_corners=True).detach() ls_d = F.interpolate(ls_d, (im.size(2), im.size(3)), mode='bilinear', align_corners=True) ls_y = F.grid_sample(gs_y, ls_d.permute(0, 2, 3, 1), align_corners=True).detach() ls_y = ls_y.squeeze().permute(1, 2, 0).cpu().numpy() save_path = f'{dst_dir}/result_ls.png' cv2.imwrite(save_path, ls_y * 255.) return save_path if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--Enet_ckpt', type=str, default='models/G_w_checkpoint_13820.pt') parser.add_argument('--Tnet_ckpt', type=str, default='models/L_w_checkpoint_27640.pt') parser.add_argument('--img_path', type=str, default='images/3.jpg') parser.add_argument('--out_dir', type=str, default='output') parser.add_argument('--device', type=str, default='cpu') args = parser.parse_args() if args.device == 'cuda' and torch.cuda.is_available(): device = torch.device('cuda:0') else: device = torch.device('cpu') dst_dir = args.out_dir Path(dst_dir).mkdir(parents=True, exist_ok=True) paper_edge = PaperEdge(args.Enet_ckpt, args.Tnet_ckpt, args.device) paper_edge.inder(args.img_path) print('ok')