Sa-m commited on
Commit
c1c9c3a
1 Parent(s): 003537c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -5,22 +5,26 @@ import numpy as np
5
  from tensorflow.keras.models import load_model
6
  import tensorflow_addons as tfa
7
  import os
8
- from tensorflow.keras.layers import *
9
- import torch.cuda
10
- import datetime, os
11
 
12
- labels= {'Subway': 0, 'Starbucks': 1,'McDonalds': 2,'Burger King': 3,'KFC': 4,'Other': 5}
13
  HEIGHT,WIDTH=224,224
14
- model=load_model('best_model.h5')
15
  NUM_CLASSES=6
 
16
 
 
17
 
18
  def classify_image(inp):
19
  inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
20
- #inp = tf.keras.applications.nasnet.preprocess_input(inp)
21
- prediction = model.predict(inp).flatten()
22
- return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)}
 
 
 
23
 
 
24
  image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
25
  label = gr.Label()
26
 
 
5
  from tensorflow.keras.models import load_model
6
  import tensorflow_addons as tfa
7
  import os
8
+ import numpy as np
9
+
 
10
 
11
+ labels= { 0:, 'Starbucks': 1,'McDonalds': 2,'Burger King': 3,'KFC': 4,'Other': 5}
12
  HEIGHT,WIDTH=224,224
 
13
  NUM_CLASSES=6
14
+ categories= ('Starbucks','McDonalds','Burger King','KFC','Other')
15
 
16
+ model=load_model('best_model.h5')
17
 
18
  def classify_image(inp):
19
  inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
20
+ inp = tf.keras.applications.nasnet.preprocess_input(inp)
21
+ prediction = model.predict(inp)
22
+ labels = dict((v,k) for k,v in labels.items())
23
+ predicted_class_indices=np.argmax(prediction,axis=1)
24
+ return {labels[i]: float(predicted_class_indices[i]) for i in range(NUM_CLASSES)}
25
+
26
 
27
+
28
  image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
29
  label = gr.Label()
30