#import tensorflow_addons as tfa import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.models import load_model import tensorflow_addons as tfa import os import numpy as np labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5} HEIGHT,WIDTH=224,224 NUM_CLASSES=6 model=load_model('best_model.h5') def classify_image(inp): np.random.seed(143) inp = inp.reshape((-1, HEIGHT,WIDTH, 3)) inp = tf.keras.applications.nasnet.preprocess_input(inp) prediction = model.predict(inp) #label = dict((v,k) for k,v in labels.items()) predicted_class_indices=np.argmax(prediction,axis=1) return {labels[i]: float(predicted_class_indices[i]) for i in range(NUM_CLASSES)} image = gr.Image(shape=(HEIGHT,WIDTH),label='Input') label = gr.Textbox() gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Brand Logo Detection').launch(debug=False)