File size: 3,090 Bytes
f3695f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
'''NEURAL STYLE TRANSFER'''
"""##Importing Libraries"""
import gradio as gr
import tensorflow as tf
# import os
import PIL
from PIL import Image,ImageOps
import numpy as np
# import time
# import requests
import cv2
from cv2 import *
# !mkdir nstmodel
# !wget -c https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz -O - | tar -xz -C /nstmodel
# import tensorflow.keras
# from PIL import Image, ImageOps
#import requests
#import tarfile
'''
url = "https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz"
response = requests.get(url,stream=True)
path_input="./"
urllib.request.urlretrieve(url, filename=path_input)
file = tarfile.open(fileobj=response.raw, mode="r|gz")
file.extractall(path="./nst_model")
'''
MODEL_PATH='Nst model'
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = tf.keras.models.load_model(MODEL_PATH)
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
"""##Saving unscaled Tensor images."""
def save_image(image, filename):
"""
Saves unscaled Tensor Images.
Args:
image: 3D image tensor. [height, width, channels]
filename: Name of the file to save to.
"""
if not isinstance(image, Image.Image):
image = tf.clip_by_value(image, 0, 255)
image = Image.fromarray(tf.cast(image, tf.uint8).numpy())
image.save("%s.jpg" % filename)
print("Saved as %s.jpg" % filename)
"""## Grayscaling image for testing purpose to check if we could get better results."""
def gray_scaled(inp_img):
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
gray_img = np.zeros_like(inp_img)
gray_img[:,:,0] = gray
gray_img[:,:,1] = gray
gray_img[:,:,2] = gray
return gray_img
def transform_mymodel(content_image,style_image):
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
content_image=gray_scaled(content_image)
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.0
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.0
#Resizing image
style_image = tf.image.resize(style_image, (256, 256))
# Stylize image
outputs = model(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
# stylized = tf.image.resize(stylized_image, (356, 356))
stylized_image =tensor_to_image(stylized_image)
save_image(stylized_image,'stylized')
return stylized_image
def gradio_intrface(mymodel):
# Initializing the input component
image1 = gr.inputs.Image() #CONTENT IMAGE
image2 = gr.inputs.Image() #STYLE IMAGE
stylizedimg=gr.outputs.Image()
gr.Interface(fn=mymodel, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer').launch()
"""The function will be launched both Inline and Outline where u need to add a content and style image."""
gradio_intrface(transform_mymodel)
|