File size: 4,490 Bytes
a87bc00
2e83a41
 
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83a41
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b674fc
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""
# MANIFESTO ANALYSIS

## IMPORTING LIBRARIES
"""

# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install tika
# !pip install clean-text
# !pip install gradio

# Commented out IPython magic to ensure Python compatibility.

import io
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import tika
from tika import parser
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from cleantext import clean


import nltk.corpus  
from nltk.text import Text
from io import StringIO
import sys 

import re

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from textblob import TextBlob
from PIL import Image

import gradio as gr
from zipfile import ZipFile



nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')




"""## PARSING FILES"""

def Parsing(parsed_text):
  parsed_text=parsed_text.name
  raw_party =parser.from_file(parsed_text) 
  # parser.parse1(option='all',urlOrPath=parsed_text)
  # from_buffer(parsed_text)
  # from_file(parsed_text)
  raw_party = raw_party['content']
  return clean(raw_party)



#Added more stopwords to avoid irrelevant terms
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')

"""## PREPROCESSING"""

def clean_text(text):
  '''
  Function which returns clean text
  '''
  text = text.encode("ascii", errors="ignore").decode("ascii")  # remove non-asciicharacters
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = re.sub(r"/ ", " ", text)
  text = text.strip(" ")
  text = re.sub(" +", " ", text).strip()  # get rid of multiple spaces and replace with a single
  
  text = [word for word in text.split() if word not in STOPWORDS]
  text = ' '.join(text)
  return text

# text_Party=clean_text(raw_party)

def Preprocess(textParty):
  '''
  Removing special characters extra spaces
  '''
  text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty) 
  #Removing all stop words
  pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
  text2Party = pattern.sub('', text1Party)
  # fdist_cong = FreqDist(word_tokens_cong)
  return text2Party





# Using Concordance,you can see each time a word is used, along with its 
# immediate context. It can give you a peek into how a word is being used
# at the sentence level and what words are used with it. 

def concordance(text_Party,strng):
  word_tokens_party = word_tokenize(text_Party)
  moby = Text(word_tokens_party) 
  resultList = []
  for i in range(0,1):
      save_stdout = sys.stdout
      result = StringIO()
      sys.stdout = result
      moby.concordance(strng,lines=10,width=82)    
      sys.stdout = save_stdout      
  s=result.getvalue().splitlines()
  return result.getvalue()
  

def normalize(d, target=1.0):
   raw = sum(d.values())
   factor = target/raw
   return {key:value*factor for key,value in d.items()}

def fDistance(text2Party):
  '''
  most frequent words search
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party).most_common(10)
  mem={}
  for x in fdistance:
    mem[x[0]]=x[1]
  return normalize(mem)

def fDistancePlot(text2Party,plotN=20):
  '''
  most frequent words visualisation
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party)
  return fdistance.plot(20)



## UI INTERFACE

def analysis(Manifesto,Search):
  raw_party = Parsing(Manifesto)
  text_Party=clean_text(raw_party)
  text_Party= Preprocess(text_Party)
  fdist_Party=fDistance(text_Party)
  searchRes=concordance(text_Party,Search)
  searChRes=clean(searchRes)
  # searChRes=searchRes.replace(Search,f"\u0332{Search}\u0332 ")
  searChRes=searchRes.replace(Search,"\u0332".join(Search))
  return fdist_Party,searChRes

  
Search_txt=gr.inputs.Textbox()   
filePdf = gr.inputs.File()
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
mfw=gr.outputs.Label(label="Most Relevant topics in manifesto")

gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[mfw,text], title='Manifesto Analysis').launch(debug=False,share=True)