Sa-m's picture
Update app.py
d4cd565
raw
history blame
4.52 kB
# -*- coding: utf-8 -*-
"""
# MANIFESTO ANALYSIS
## IMPORTING LIBRARIES
"""
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install tika
# !pip install clean-text
# !pip install gradio
# Commented out IPython magic to ensure Python compatibility.
import io
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import tika
from tika import parser
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from cleantext import clean
import nltk.corpus
from nltk.text import Text
from io import StringIO
import sys
import re
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import gradio as gr
from zipfile import ZipFile
#import jdk
#jdk.install('11')
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
"""## PARSING FILES"""
def Parsing(parsed_text):
parsed_text=parsed_text.name
raw_party =parser.from_file(parsed_text)
# parser.parse1(option='all',urlOrPath=parsed_text)
# from_buffer(parsed_text)
# from_file(parsed_text)
raw_party = raw_party['content']
return clean(raw_party)
#Added more stopwords to avoid irrelevant terms
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
"""## PREPROCESSING"""
def clean_text(text):
'''
Function which returns clean text
'''
text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters
text = re.sub(r"\n", " ", text)
text = re.sub(r"\n\n", " ", text)
text = re.sub(r"\t", " ", text)
text = re.sub(r"/ ", " ", text)
text = text.strip(" ")
text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single
text = [word for word in text.split() if word not in STOPWORDS]
text = ' '.join(text)
return text
# text_Party=clean_text(raw_party)
def Preprocess(textParty):
'''
Removing special characters extra spaces
'''
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
#Removing all stop words
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
text2Party = pattern.sub('', text1Party)
# fdist_cong = FreqDist(word_tokens_cong)
return text2Party
# Using Concordance,you can see each time a word is used, along with its
# immediate context. It can give you a peek into how a word is being used
# at the sentence level and what words are used with it.
def concordance(text_Party,strng):
word_tokens_party = word_tokenize(text_Party)
moby = Text(word_tokens_party)
resultList = []
for i in range(0,1):
save_stdout = sys.stdout
result = StringIO()
sys.stdout = result
moby.concordance(strng,lines=10,width=82)
sys.stdout = save_stdout
s=result.getvalue().splitlines()
return result.getvalue()
def normalize(d, target=1.0):
raw = sum(d.values())
factor = target/raw
return {key:value*factor for key,value in d.items()}
def fDistance(text2Party):
'''
most frequent words search
'''
word_tokens_party = word_tokenize(text2Party) #Tokenizing
fdistance = FreqDist(word_tokens_party).most_common(10)
mem={}
for x in fdistance:
mem[x[0]]=x[1]
return normalize(mem)
def fDistancePlot(text2Party,plotN=20):
'''
most frequent words visualisation
'''
word_tokens_party = word_tokenize(text2Party) #Tokenizing
fdistance = FreqDist(word_tokens_party)
return fdistance.plot(20)
## UI INTERFACE
def analysis(Manifesto,Search):
raw_party = Parsing(Manifesto)
text_Party=clean_text(raw_party)
text_Party= Preprocess(text_Party)
fdist_Party=fDistance(text_Party)
searchRes=concordance(text_Party,Search)
searChRes=clean(searchRes)
# searChRes=searchRes.replace(Search,f"\u0332{Search}\u0332 ")
searChRes=searchRes.replace(Search,"\u0332".join(Search))
return fdist_Party,searChRes
Search_txt=gr.inputs.Textbox()
filePdf = gr.inputs.File()
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
mfw=gr.outputs.Label(label="Most Relevant topics in manifesto")
gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[mfw,text], title='Manifesto Analysis').launch(debug=False,share=True)