|
import os |
|
import torch |
|
import numpy as np |
|
import random |
|
import scipy.io as scio |
|
import src.utils.audio as audio |
|
|
|
def crop_pad_audio(wav, audio_length): |
|
if len(wav) > audio_length: |
|
wav = wav[:audio_length] |
|
elif len(wav) < audio_length: |
|
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0) |
|
return wav |
|
|
|
def parse_audio_length(audio_length, sr, fps): |
|
bit_per_frames = sr / fps |
|
|
|
num_frames = int(audio_length / bit_per_frames) |
|
audio_length = int(num_frames * bit_per_frames) |
|
|
|
return audio_length, num_frames |
|
|
|
def generate_blink_seq(num_frames): |
|
ratio = np.zeros((num_frames,1)) |
|
frame_id = 0 |
|
while frame_id in range(num_frames): |
|
|
|
start = 80 |
|
if frame_id+start+9<=num_frames - 1: |
|
ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5] |
|
frame_id = frame_id+start+9 |
|
else: |
|
break |
|
return ratio |
|
|
|
def generate_blink_seq_randomly(num_frames): |
|
ratio = np.zeros((num_frames,1)) |
|
if num_frames<=20: |
|
return ratio |
|
frame_id = 0 |
|
while frame_id in range(num_frames): |
|
|
|
start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70))) |
|
if frame_id+start+5<=num_frames - 1: |
|
ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5] |
|
frame_id = frame_id+start+5 |
|
else: |
|
break |
|
return ratio |
|
|
|
def get_data(first_coeff_path, audio_path, device): |
|
|
|
syncnet_mel_step_size = 16 |
|
syncnet_T = 5 |
|
MAX_FRAME = 32 |
|
fps = 25 |
|
|
|
pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0] |
|
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] |
|
|
|
source_semantics_path = first_coeff_path |
|
source_semantics_dict = scio.loadmat(source_semantics_path) |
|
ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] |
|
|
|
wav = audio.load_wav(audio_path, 16000) |
|
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25) |
|
wav = crop_pad_audio(wav, wav_length) |
|
orig_mel = audio.melspectrogram(wav).T |
|
spec = orig_mel.copy() |
|
indiv_mels = [] |
|
|
|
for i in range(num_frames): |
|
start_frame_num = i-2 |
|
start_idx = int(80. * (start_frame_num / float(fps))) |
|
end_idx = start_idx + syncnet_mel_step_size |
|
seq = list(range(start_idx, end_idx)) |
|
seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ] |
|
m = spec[seq, :] |
|
indiv_mels.append(m.T) |
|
indiv_mels = np.asarray(indiv_mels) |
|
ratio = generate_blink_seq_randomly(num_frames) |
|
|
|
|
|
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) |
|
ratio = torch.FloatTensor(ratio).unsqueeze(0) |
|
ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0) |
|
|
|
indiv_mels = indiv_mels.to(device) |
|
ratio = ratio.to(device) |
|
ref_coeff = ref_coeff.to(device) |
|
|
|
return {'indiv_mels': indiv_mels, |
|
'ref': ref_coeff, |
|
'num_frames': num_frames, |
|
'ratio_gt': ratio, |
|
'audio_name': audio_name, 'pic_name': pic_name} |
|
|
|
|