|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from src.audio2pose_models.res_unet import ResUnet |
|
|
|
def class2onehot(idx, class_num): |
|
|
|
assert torch.max(idx).item() < class_num |
|
onehot = torch.zeros(idx.size(0), class_num).to(idx.device) |
|
onehot.scatter_(1, idx, 1) |
|
return onehot |
|
|
|
class CVAE(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES |
|
decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES |
|
latent_size = cfg.MODEL.CVAE.LATENT_SIZE |
|
num_classes = cfg.DATASET.NUM_CLASSES |
|
audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE |
|
audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE |
|
seq_len = cfg.MODEL.CVAE.SEQ_LEN |
|
|
|
self.latent_size = latent_size |
|
|
|
self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes, |
|
audio_emb_in_size, audio_emb_out_size, seq_len) |
|
self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes, |
|
audio_emb_in_size, audio_emb_out_size, seq_len) |
|
def reparameterize(self, mu, logvar): |
|
std = torch.exp(0.5 * logvar) |
|
eps = torch.randn_like(std) |
|
return mu + eps * std |
|
|
|
def forward(self, batch): |
|
batch = self.encoder(batch) |
|
mu = batch['mu'] |
|
logvar = batch['logvar'] |
|
z = self.reparameterize(mu, logvar) |
|
batch['z'] = z |
|
return self.decoder(batch) |
|
|
|
def test(self, batch): |
|
''' |
|
class_id = batch['class'] |
|
z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device) |
|
batch['z'] = z |
|
''' |
|
return self.decoder(batch) |
|
|
|
class ENCODER(nn.Module): |
|
def __init__(self, layer_sizes, latent_size, num_classes, |
|
audio_emb_in_size, audio_emb_out_size, seq_len): |
|
super().__init__() |
|
|
|
self.resunet = ResUnet() |
|
self.num_classes = num_classes |
|
self.seq_len = seq_len |
|
|
|
self.MLP = nn.Sequential() |
|
layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6 |
|
for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): |
|
self.MLP.add_module( |
|
name="L{:d}".format(i), module=nn.Linear(in_size, out_size)) |
|
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU()) |
|
|
|
self.linear_means = nn.Linear(layer_sizes[-1], latent_size) |
|
self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size) |
|
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size) |
|
|
|
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size)) |
|
|
|
def forward(self, batch): |
|
class_id = batch['class'] |
|
pose_motion_gt = batch['pose_motion_gt'] |
|
ref = batch['ref'] |
|
bs = pose_motion_gt.shape[0] |
|
audio_in = batch['audio_emb'] |
|
|
|
|
|
pose_emb = self.resunet(pose_motion_gt.unsqueeze(1)) |
|
pose_emb = pose_emb.reshape(bs, -1) |
|
|
|
|
|
print(audio_in.shape) |
|
audio_out = self.linear_audio(audio_in) |
|
audio_out = audio_out.reshape(bs, -1) |
|
|
|
class_bias = self.classbias[class_id] |
|
x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) |
|
x_out = self.MLP(x_in) |
|
|
|
mu = self.linear_means(x_out) |
|
logvar = self.linear_means(x_out) |
|
|
|
batch.update({'mu':mu, 'logvar':logvar}) |
|
return batch |
|
|
|
class DECODER(nn.Module): |
|
def __init__(self, layer_sizes, latent_size, num_classes, |
|
audio_emb_in_size, audio_emb_out_size, seq_len): |
|
super().__init__() |
|
|
|
self.resunet = ResUnet() |
|
self.num_classes = num_classes |
|
self.seq_len = seq_len |
|
|
|
self.MLP = nn.Sequential() |
|
input_size = latent_size + seq_len*audio_emb_out_size + 6 |
|
for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)): |
|
self.MLP.add_module( |
|
name="L{:d}".format(i), module=nn.Linear(in_size, out_size)) |
|
if i+1 < len(layer_sizes): |
|
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU()) |
|
else: |
|
self.MLP.add_module(name="sigmoid", module=nn.Sigmoid()) |
|
|
|
self.pose_linear = nn.Linear(6, 6) |
|
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size) |
|
|
|
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size)) |
|
|
|
def forward(self, batch): |
|
|
|
z = batch['z'] |
|
bs = z.shape[0] |
|
class_id = batch['class'] |
|
ref = batch['ref'] |
|
audio_in = batch['audio_emb'] |
|
|
|
|
|
audio_out = self.linear_audio(audio_in) |
|
|
|
audio_out = audio_out.reshape([bs, -1]) |
|
class_bias = self.classbias[class_id] |
|
|
|
z = z + class_bias |
|
x_in = torch.cat([ref, z, audio_out], dim=-1) |
|
x_out = self.MLP(x_in) |
|
x_out = x_out.reshape((bs, self.seq_len, -1)) |
|
|
|
|
|
|
|
pose_emb = self.resunet(x_out.unsqueeze(1)) |
|
|
|
pose_motion_pred = self.pose_linear(pose_emb.squeeze(1)) |
|
|
|
batch.update({'pose_motion_pred':pose_motion_pred}) |
|
return batch |
|
|