Spaces:
Running
Running
File size: 8,706 Bytes
a106da8 656f678 a106da8 656f678 a106da8 656f678 a106da8 f50a20b a106da8 e0a50f9 59e7947 a106da8 59e7947 e0a50f9 a106da8 20f54f5 f50a20b a106da8 ca94c32 f50a20b a106da8 f50a20b a106da8 f50a20b a106da8 f50a20b e0a50f9 a106da8 e0a50f9 a106da8 e0a50f9 a106da8 e0a50f9 a106da8 ca94c32 a106da8 ca94c32 a106da8 ca94c32 a106da8 ca94c32 a106da8 2199156 f90ba5b 426bde5 f90ba5b 2199156 f90ba5b 9c6f74f f90ba5b a106da8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from io import BytesIO
from PIL import Image
import gradio as gr
import re
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from transformers import AutoProcessor, PaliGemmaProcessor, PaliGemmaForConditionalGeneration
from transformers import AutoModelForVision2Seq
from huggingface_hub import InferenceClient
import base64
device = "cuda" if torch.cuda.is_available() else "cpu"
model_choices = [
"idefics2",
"paligemma",
"donut"
]
def load_donut_model():
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model.to(device)
return model, processor
def load_paligemma_docvqa():
# model_id = "google/paligemma-3b-ft-docvqa-896"
model_id = "google/paligemma-3b-mix-448"
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model.to(device)
return model, processor
def load_idefics_docvqa():
model_id = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id)
model.to(device)
return model, processor
def load_models():
# load donut
donut_model, donut_processor = load_donut_model()
print("donut downloaded")
# #load paligemma
pg_model, pg_processor = load_paligemma_docvqa()
print("paligemma downloaded")
return {"donut":[donut_model, donut_processor],
"paligemma": [pg_model, pg_processor]
}
loaded_models = load_models()
print("models loaded")
def base64_encoded_image(image_array):
im = Image.fromarray(image_array)
buffered = BytesIO()
im.save(buffered, format="PNG")
image_bytes = buffered.getvalue()
image_base64 = base64.b64encode(image_bytes).decode('ascii')
return image_base64
def inference_calling_idefics(image_array, question):
model_id = "HuggingFaceM4/idefics2-8b"
client = InferenceClient(model=model_id)
image_base64 = base64_encoded_image(image_array)
image_info = f"data:image/png;base64,{image_base64}"
prompt = f"![]({image_info}){question}\n\n"
response = client.text_generation(prompt)
return response
def process_document_donut(image_array, question):
model, processor = loaded_models.get("donut")
# prepare encoder inputs
pixel_values = processor(image_array, return_tensors="pt").pixel_values
# prepare decoder inputs
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
# generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
op = processor.token2json(sequence)
op = op.get("answer", str(op))
return op
def process_document_pg(image_array, question):
print("qustion :", question)
print("called loaded model")
model, processor = loaded_models.get("paligemma")
print("converting inputs")
inputs = processor(images=image_array, text=question, return_tensors="pt").to(device)
print("get predictions")
predictions = model.generate(**inputs, max_new_tokens=100)
print("returning decoding")
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
def process_document_idf(image_array, question):
model, processor = loaded_models.get("idefics")
inputs = processor(images=image_array, text=question, return_tensors="pt") #.to(device)
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
def generate_answer_donut(image_array, question):
try:
print("processing document - donut")
answer = process_document_donut(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answer_idefics(image_array, question):
try:
print("processing document - idf2")
# answer = process_document_idf(image_array, question)
answer = inference_calling_idefics(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answer_paligemma(image_array, question):
try:
print("processing document - pg")
answer = process_document_pg(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answers(image_path, question, selected_model=model_choices[0]):
print("selected model: ", selected_model)
try:
if selected_model == "donut":
print("generate answers donut")
answer = generate_answer_donut(image_path, question)
elif selected_model == "paligemma":
print("generate answers pg")
answer = generate_answer_paligemma(image_path, question)
else:
print("generate answers idf2")
answer = generate_answer_idefics(image_path, question)
return [answer] #[donut_answer, pg_answer, idf_answer]
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return ["sorry :("]
def greet(name, shame, game):
return "Hello " + shame + "!!"
INTRO_TEXT = """## VQA demo\n\n
VQA task models comparison
This space is to compare multiple models on visual document question answering. \n\n
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
# with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(label="Input Image")
question = gr.Text(label="Question")
selected_model = gr.Radio(model_choices, label="Model", info="Select the model you want to run")
outputs_answer = gr.Text(label="Answer generated by the selected model")
run_button = gr.Button()
inputs = [
image,
question,
selected_model
]
outputs = [
outputs_answer
]
run_button.click(
fn=generate_answers,
inputs=inputs,
outputs=outputs,
)
examples = [["images/sample_vendor_contract.png", "Agreement is between whom?"],
["images/apple-10k-form.png", "What were the EMEA revenues in 2017?"],
["images/infographic.png", "What is workforce in UPS?"],
["images/omr1.png", "What was the food quality of hospitality tent?"],
["images/omr2.png", "What is efficiency rating?"],
["images/omr3.png", "What is the selected reason code?"],
["images/omr4.png", "What is the product classification?"],
["images/cupon code 2.png", "The coupon code is adressed to whom?"],
["images/cupon code 2.png", "What is coupon expiration date?"],
["images/cupon code 2.png", "What is assigned code?"],
["images/completion form.png", "What is date posting completed?"],
["images/sender_receiver.png", "What is the fax phone number of the sender?"],
["images/marketing research.png", "What is the current available balance?"],
["images/toxicity.png", "What is the reported date?"],
["images/handwriting.png", "What is the contribution amount per pay period?"],
]
gr.Examples(
examples=examples,
inputs=inputs,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |