vQA-exploration / app.py
saylee-m
added more comments
f50a20b
raw
history blame
7.68 kB
from io import BytesIO
from PIL import Image
import gradio as gr
import re
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from transformers import AutoProcessor, PaliGemmaProcessor, PaliGemmaForConditionalGeneration
from transformers import AutoModelForVision2Seq
from huggingface_hub import InferenceClient
import base64
device = "cuda" if torch.cuda.is_available() else "cpu"
model_choices = [
"idefics2",
"paligemma",
"donut"
]
def load_donut_model():
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model.to(device)
return model, processor
def load_paligemma_docvqa():
# model_id = "google/paligemma-3b-ft-docvqa-896"
model_id = "google/paligemma-3b-mix-448"
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model.to(device)
return model, processor
def load_idefics_docvqa():
model_id = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id)
model.to(device)
return model, processor
def load_models():
# load donut
donut_model, donut_processor = load_donut_model()
print("donut downloaded")
# #load paligemma
pg_model, pg_processor = load_paligemma_docvqa()
print("paligemma downloaded")
return {"donut":[donut_model, donut_processor],
"paligemma": [pg_model, pg_processor]
}
loaded_models = load_models()
print("models loaded")
def base64_encoded_image(image_array):
im = Image.fromarray(image_array)
buffered = BytesIO()
im.save(buffered, format="PNG")
image_bytes = buffered.getvalue()
image_base64 = base64.b64encode(image_bytes).decode('ascii')
return image_base64
def inference_calling_idefics(image_array, question):
model_id = "HuggingFaceM4/idefics2-8b"
client = InferenceClient(model=model_id)
image_base64 = base64_encoded_image(image_array)
image_info = f"data:image/png;base64,{image_base64}"
prompt = f"![]({image_info}){question}\n\n"
response = client.text_generation(prompt)
return response
def process_document_donut(image_array, question):
model, processor = loaded_models.get("donut")
# prepare encoder inputs
pixel_values = processor(image_array, return_tensors="pt").pixel_values
# prepare decoder inputs
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
# generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
op = processor.token2json(sequence)
op = op.get("answer", str(op))
return op
def process_document_pg(image_array, question):
print("called loaded model")
model, processor = loaded_models.get("paligemma")
print("converting inputs")
inputs = processor(images=image_array, text=question, return_tensors="pt").to(device)
print("get predictions")
predictions = model.generate(**inputs, max_new_tokens=100)
print("returning decoding")
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
def process_document_idf(image_array, question):
model, processor = loaded_models.get("idefics")
inputs = processor(images=image_array, text=question, return_tensors="pt") #.to(device)
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
def generate_answer_donut(image_array, question):
try:
print("processing document - donut")
answer = process_document_donut(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answer_idefics(image_array, question):
try:
print("processing document - idf2")
# answer = process_document_idf(image_array, question)
answer = inference_calling_idefics(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answer_paligemma(image_array, question):
try:
print("processing document - pg")
answer = process_document_pg(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answers(image_path, question, selected_model=model_choices[0]):
try:
if selected_model == "donut":
answer = generate_answer_donut(image_path, question)
elif selected_model == "paligemma":
answer = generate_answer_paligemma(image_path, question)
else:
answer = generate_answer_idefics(image_path, question)
return [answer] #[donut_answer, pg_answer, idf_answer]
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return ["sorry :("]
def greet(name, shame, game):
return "Hello " + shame + "!!"
INTRO_TEXT = """## VQA demo\n\n
VQA task models comparison
This space is to compare multiple models on visual document question answering. \n\n
**Note: As the app is running on CPU currently, you might get error if you run multiple models back to back. Please reload the app to get the output.
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
# with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(label="Input Image")
question = gr.Text(label="Question")
selected_model = gr.Radio(model_choices, label="Model", info="Select the model you want to run")
outputs_answer = gr.Text(label="Answer generated by the selected model")
run_button = gr.Button()
inputs = [
image,
question,
selected_model
]
outputs = [
outputs_answer
]
run_button.click(
fn=generate_answers,
inputs=inputs,
outputs=outputs,
)
examples = [["images/sample_vendor_contract.png", "Who is agreement between?"],
["images/apple-10k-form.png", "What are EMEA revenues in 2017?"],
["images/bel-infographic.png", "What is total turnover?"],
]
gr.Examples(
examples=examples,
inputs=inputs,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)