Spaces:
Sleeping
Sleeping
File size: 1,066 Bytes
e2a1281 e98cceb e2324bd e98cceb e2a1281 1d0c7f1 e2a1281 e98cceb e2a1281 2ec730e e2a1281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
from pathlib import Path
from fastai.vision.all import *
import gradio as gr
examples = [
["project/WBC-Benign-017.jpg"], # Replace with the actual paths to your images
["project/WBC-Benign-030.jpg"],
["project/WBC-Malignant-Early-027.jpg"],
["project/WBC-Malignant-Pre-019.jpg"],
["project/WBC-Malignant-Pro-027.jpg"]
]
# Correctly format the path for Windows
model_path = Path(r'efficientnet_b3_model.pkl')
# Load the model
learn = load_learner(model_path, cpu=True)
# Define the prediction function
def classify_image(image):
pred, idx, probs = learn.predict(image)
return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))}
# Set up the Gradio interface
interface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
title="EfficientNet B3 Image Classifier",
examples= examples,
description="Upload an image to classify using the trained EfficientNet B3 model.",
)
# Launch the app
if __name__ == "__main__":
interface.launch(share=True)
|