Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from fastai.vision.all import *
|
3 |
+
# import timm
|
4 |
+
|
5 |
+
# # Load the exported model
|
6 |
+
# learn = load_learner('./efficientnet_b3_model.pkl', cpu=True) # Using cpu=True for compatibility
|
7 |
+
|
8 |
+
# learn.export('./efficientnet_b3_model.pkl') # export_model(learn, 'efficientnet_b3_model.pkl')
|
9 |
+
|
10 |
+
|
11 |
+
# # Define the prediction function
|
12 |
+
# def classify_image(image):
|
13 |
+
# pred, idx, probs = learn.predict(image)
|
14 |
+
# # Return the top 3 predictions with their probabilities
|
15 |
+
# return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))}
|
16 |
+
|
17 |
+
# # Set up the Gradio interface
|
18 |
+
# interface = gr.Interface(
|
19 |
+
# fn=classify_image, # Function to make predictions
|
20 |
+
# inputs=gr.Image(type="pil"), # Input as an image in PIL format
|
21 |
+
# outputs=gr.Label(num_top_classes=3), # Output shows top 3 predicted classes
|
22 |
+
# title="EfficientNet B3 Image Classifier",
|
23 |
+
# description="Upload an image to classify using the trained EfficientNet B3 model."
|
24 |
+
# )
|
25 |
+
|
26 |
+
# # Launch the Gradio app
|
27 |
+
# if __name__ == "__main__":
|
28 |
+
# interface.launch(share=True) # `share=True` makes the app publicly accessible
|
29 |
+
|
30 |
+
from pathlib import Path
|
31 |
+
from fastai.vision.all import *
|
32 |
+
import gradio as gr
|
33 |
+
|
34 |
+
# Correctly format the path for Windows
|
35 |
+
model_path = Path(r'efficientnet_b3_model.pkl')
|
36 |
+
|
37 |
+
# Load the model
|
38 |
+
learn = load_learner(model_path, cpu=True)
|
39 |
+
|
40 |
+
# Define the prediction function
|
41 |
+
def classify_image(image):
|
42 |
+
pred, idx, probs = learn.predict(image)
|
43 |
+
return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))}
|
44 |
+
|
45 |
+
# Set up the Gradio interface
|
46 |
+
interface = gr.Interface(
|
47 |
+
fn=classify_image,
|
48 |
+
inputs=gr.Image(type="pil"),
|
49 |
+
outputs=gr.Label(num_top_classes=3),
|
50 |
+
title="EfficientNet B3 Image Classifier",
|
51 |
+
description="Upload an image to classify using the trained EfficientNet B3 model."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Launch the app
|
55 |
+
if __name__ == "__main__":
|
56 |
+
interface.launch(share=True)
|