from dotenv import load_dotenv,find_dotenv from transformers import pipeline import os load_dotenv(find_dotenv()) from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS import faiss from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings directory_path = "data" # Path to the directory containing your PDF files loader = DirectoryLoader(directory_path, glob="./*.pdf", loader_cls=PyPDFLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200) texts = text_splitter.split_documents(documents) # Create a SentenceTransformer object embeddings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1-ablated",model_kwargs={"trust_remote_code":True}) db = FAISS.from_documents(texts, embeddings) db.save_local("gym_vector_db")