|
import streamlit as st |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
|
|
|
|
def load_data(): |
|
df = pd.read_csv("processed_data.csv") |
|
return df |
|
|
|
|
|
def app(): |
|
|
|
st.title("Pizza Sales Data Analysis Dashboard by Saif Khan") |
|
df = load_data() |
|
|
|
total_orders = df['order_id'].nunique() |
|
total_revenue = df['total_price'].sum() |
|
most_popular_size = df['pizza_size'].value_counts().idxmax() |
|
most_frequent_category = df['pizza_category'].value_counts().idxmax() |
|
total_pizzas_sold = df['quantity'].sum() |
|
|
|
st.sidebar.header("Key Metrics") |
|
st.sidebar.metric("Total Revenue", f"${total_revenue:,.2f}") |
|
st.sidebar.metric("Most Popular Size", most_popular_size) |
|
st.sidebar.metric("Most Popular Category", most_frequent_category) |
|
st.sidebar.metric("Total Pizzas Sold", total_pizzas_sold) |
|
st.sidebar.metric("Total Orders", total_orders) |
|
plots = [ |
|
{"title": "Top Selling Pizzas (by Quantity)", "x": "pizza_name", "y": "quantity", "top": 5}, |
|
{"title": "Quantity of Pizzas Sold by Category and Time of the Day", "x": "time_of_day", "hue": "pizza_category"}, |
|
{"title": "Quantity of Pizzas Sold by Size and Time of the Day", "x": "time_of_day", "hue": "pizza_size"}, |
|
{"title": "Monthly Revenue Trends by Pizza Category", "x": "order_month", "y": "total_price", "hue": "pizza_category", "estimator": "sum", "marker": "o"}, |
|
] |
|
|
|
for plot in plots: |
|
st.header(plot["title"]) |
|
|
|
fig, ax = plt.subplots() |
|
|
|
if "Top Selling Pizzas" in plot["title"]: |
|
data_aux = df.groupby(plot["x"])[plot["y"]].sum().reset_index().sort_values(by=plot["y"], ascending=False).head(plot["top"]) |
|
ax.bar(data_aux[plot["x"]].values.tolist(), data_aux[plot["y"]].values.tolist()) |
|
ax.tick_params(axis='x', rotation=45) |
|
|
|
if "Quantity of Pizzas" in plot["title"]: |
|
sns.countplot(data=df, x=plot["x"], hue=plot["hue"], ax=ax) |
|
|
|
|
|
if "Monthly Revenue" in plot["title"]: |
|
sns.lineplot(data=df, x=plot["x"], y=plot["y"], hue=plot["hue"], estimator=plot["estimator"], errorbar=None, marker=plot["marker"], ax=ax) |
|
|
|
ax.set_xlabel(" ".join(plot["x"].split("_")).capitalize()) |
|
if "y" in plot.keys(): |
|
ax.set_ylabel(" ".join(plot["y"].split("_")).capitalize()) |
|
else: |
|
ax.set_ylabel("Quantity") |
|
ax.legend(bbox_to_anchor=(1,1)) |
|
|
|
st.pyplot(fig) |
|
|
|
if __name__ == "__main__": |
|
app() |
|
|