import gradio as gr from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") # setting=heroic pose, wearing a sleek, high-tech suit and holding a futuristic gadget.The background should be dark and dramatic, with explosions and other action-packed elements def generate(celebrity, movie,setting): prompt=f" Create a movie poster featuring {celebrity} in a {movie} inspired role.The poster should include the title of the movie {movie},and feature {celebrity} in a {setting}" image = pipe(prompt).images[0] return image import os HF_TOKEN = os.getenv('sai') hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "movie-poster") gr.Interface( fn = generate, inputs=[ gr.inputs.Textbox(label="celebrity"), gr.inputs.Dropdown(label="Movies", choices=["Mission Impossible", "Avengers", "Batman","Baahubali","Transporter","Rocky"]), gr.inputs.Textbox(label="Setting") ], outputs= gr.outputs.Image(label="Generated movie poster",type='pil'), title="Movie Poster Generator" , allow_flagging="manual", flagging_options=["Good", "Better", "Worst"], flagging_callback=hf_writer ).launch(share=True)