Sakil's picture
Update app.py (#1)
bfcd066
raw
history blame
3.47 kB
#Importing all the necessary packages
import nltk
import librosa
import IPython.display
import torch
import gradio as gr
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
nltk.download("punkt")
#Loading the model and the tokenizer
model_name = "facebook/wav2vec2-base-960h"
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name
model = Wav2Vec2ForCTC.from_pretrained(model_name)
def load_data(input_file):
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
"""
#read the file
speech, sample_rate = librosa.load(input_file)
#make it 1-D
if len(speech.shape) > 1:
speech = speech[:,0] + speech[:,1]
#Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
if sample_rate !=16000:
speech = librosa.resample(speech, sample_rate,16000)
#speeches = librosa.effects.split(speech)
return speech
def correct_casing(input_sentence):
""" This function is for correcting the casing of the generated transcribed text
"""
sentences = nltk.sent_tokenize(input_sentence)
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
def asr_transcript(input_file):
"""This function generates transcripts for the provided audio input
"""
speech = load_data(input_file)
#Tokenize
input_values = tokenizer(speech, return_tensors="pt").input_values
#Take logits
logits = model(input_values).logits
#Take argmax
predicted_ids = torch.argmax(logits, dim=-1)
#Get the words from predicted word ids
transcription = tokenizer.decode(predicted_ids[0])
#Output is all upper case
transcription = correct_casing(transcription.lower())
return transcription
def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
transcript = ""
# Ensure that the sample rate is 16k
sample_rate = librosa.get_samplerate(input_file)
# Stream over 10 seconds chunks rather than load the full file
stream = librosa.stream(
input_file,
block_length=20, #number of seconds to split the batch
frame_length=sample_rate, #16000,
hop_length=sample_rate, #16000
)
for speech in stream:
if len(speech.shape) > 1:
speech = speech[:, 0] + speech[:, 1]
if sample_rate !=16000:
speech = librosa.resample(speech, sample_rate,16000)
input_values = tokenizer(speech, return_tensors="pt").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.decode(predicted_ids[0])
#transcript += transcription.lower()
transcript += correct_casing(transcription.lower())
#transcript += " "
return transcript[:3800]
gr.Interface(asr_transcript_long,
#inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"),
inputs = gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload your audio file here"),
outputs = gr.outputs.Textbox(type="str",label="Output Text"),
title="English Audio Transcriptor",
description = "This tool transcribes your audio to the text",
examples = [["Batman1_dialogue.wav"], ["batman2_dialogue.wav"], ["batman3_dialogue.wav"],["catwoman_dialogue.wav"]], theme="grass").launch()