Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import pytube as pt | |
from transformers import pipeline | |
from huggingface_hub import model_info | |
import time | |
import unicodedata | |
# from gradio.themes.utils.theme_dropdown import create_theme_dropdown | |
MODEL_NAME = "SakshiRathi77/wav2vec2-large-xlsr-300m-hi-kagglex" | |
lang = "hi" | |
# my_theme = gr.Theme.from_hub('freddyaboulton/dracula_revamped') | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
device=device, | |
) | |
def transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
text = pipe(file)["text"] | |
return warn_output + text | |
def rt_transcribe(audio, state=""): | |
time.sleep(2) | |
text = pipe(audio)["text"] | |
state += unicodedata.normalize("NFC",text) + " " | |
return state, state | |
demo = gr.Blocks() | |
examples=[["examples/example1.mp3"], ["examples/example2.mp3"],["examples/example3.mp3"]] | |
title =""" | |
HindiSpeechPro: WAV2VEC-Powered ASR Interface | |
""" | |
description = """ | |
<p> | |
<center> | |
Welcome to the HindiSpeechPro, a cutting-edge interface powered by a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. | |
<img src="https://huggingface.co/spaces/SakshiRathi77/SakshiRathi77-Wav2Vec2-hi-kagglex/resolve/main/Images/main_image2.png" alt="logo" ;> | |
</center> | |
</p> | |
""" | |
# article = "<p style='text-align: center'><a href='https://github.com/SakshiRathi77/ASR' target='_blank'>Source Code on Github</a></p><p style='text-align: center'><a href='https://huggingface.co/blog/fine-tune-xlsr-wav2vec2' target='_blank'>Reference</a></p><p style='text-align: center'><a href='https://forms.gle/hjfc3F1P7m3weQVAA' target='_blank'><img src='https://e7.pngegg.com/pngimages/794/310/png-clipart-customer-review-feedback-user-service-others-miscellaneous-text-thumbnail.png' alt='Feedback Form' ;></a></p>" | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath"), | |
gr.inputs.Audio(source="upload", type="filepath"), | |
], | |
outputs="text", | |
# theme="huggingface", | |
title=title, | |
description= description , | |
allow_flagging="never", | |
examples=examples, | |
) | |
rt_transcribe = gr.Interface( | |
fn=rt_transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", streaming=True), | |
"state" | |
], | |
outputs=[ "textbox", | |
"state"], | |
# theme="huggingface", | |
title=title, | |
description= description , | |
allow_flagging="never", | |
live=True, | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, rt_transcribe], ["Transcribe Audio", "Transcribe Realtime Voice"]) | |
demo.launch(share=True) | |