Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import pytube as pt | |
from transformers import pipeline | |
from huggingface_hub import model_info | |
import time | |
import unicodedata | |
MODEL_NAME = "SakshiRathi77/wav2vec2-large-xlsr-300m-hi-kagglex" | |
lang = "hi" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
device=device, | |
) | |
def transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
text = pipe(file)["text"] | |
return warn_output + text | |
# def _return_yt_html_embed(yt_url): | |
# video_id = yt_url.split("?v=")[-1] | |
# HTML_str = ( | |
# f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
# " </center>" | |
# ) | |
# return HTML_str | |
# def yt_transcribe(yt_url): | |
# yt = pt.YouTube(yt_url) | |
# html_embed_str = _return_yt_html_embed(yt_url) | |
# stream = yt.streams.filter(only_audio=True)[0] | |
# stream.download(filename="audio.mp3") | |
# text = pipe("audio.mp3")["text"] | |
# return html_embed_str, text | |
def rt_transcribe(audio, state=""): | |
time.sleep(2) | |
text = p(audio)["text"] | |
state += unicodedata.normalize("NFC",text) + " " | |
return state, state | |
demo = gr.Blocks() | |
examples=[["examples/example1.mp3"], ["examples/example2.mp3"]] | |
description = """ | |
<p> | |
<center> | |
Welcome to the HindiSpeechPro, a cutting-edge interface powered by a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. Easily convert your spoken words to accurate text with just a few clicks. | |
</center> | |
</p> | |
<center> | |
<img src="https://huggingface.co/spaces/kingabzpro/real-time-Urdu-ASR/resolve/main/Images/cover.jpg" alt="logo" width="550"/> | |
</center> | |
""" | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath"), | |
gr.inputs.Audio(source="upload", type="filepath"), | |
], | |
outputs="text", | |
theme="huggingface", | |
title="HindiSpeechPro: WAV2VEC-Powered ASR Interface", | |
description= description , | |
allow_flagging="never", | |
examples=examples, | |
).launch(share=True ) | |
gr.Interface.load("models/SakshiRathi77/wav2vec2-large-xlsr-300m-hi-kagglex").launch() |