SakshiRathi77 commited on
Commit
12b0903
1 Parent(s): 7fe9782

Upload 33 files

Browse files
.gitattributes CHANGED
@@ -1,37 +1,31 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
  *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
18
  *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- master_tmp.png filter=lfs diff=lfs merge=lfs -text
37
- to_score_planogram_tmp.png filter=lfs diff=lfs merge=lfs -text
 
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
 
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
 
11
  *.model filter=lfs diff=lfs merge=lfs -text
12
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
13
  *.onnx filter=lfs diff=lfs merge=lfs -text
14
  *.ot filter=lfs diff=lfs merge=lfs -text
15
  *.parquet filter=lfs diff=lfs merge=lfs -text
16
  *.pb filter=lfs diff=lfs merge=lfs -text
 
 
17
  *.pt filter=lfs diff=lfs merge=lfs -text
18
  *.pth filter=lfs diff=lfs merge=lfs -text
19
  *.rar filter=lfs diff=lfs merge=lfs -text
 
20
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
22
  *.tflite filter=lfs diff=lfs merge=lfs -text
23
  *.tgz filter=lfs diff=lfs merge=lfs -text
 
24
  *.xz filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ sample_master_planogram.jpeg filter=lfs diff=lfs merge=lfs -text
29
+ tmp.png filter=lfs diff=lfs merge=lfs -text
30
+ tmp/master_tmp.png filter=lfs diff=lfs merge=lfs -text
31
+ tmp/to_score_planogram_tmp.png filter=lfs diff=lfs merge=lfs -text
CONTRIBUTING.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Contributing to YOLOv5 🚀
2
+
3
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4
+
5
+ - Reporting a bug
6
+ - Discussing the current state of the code
7
+ - Submitting a fix
8
+ - Proposing a new feature
9
+ - Becoming a maintainer
10
+
11
+ YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
12
+ helping push the frontiers of what's possible in AI 😃!
13
+
14
+ ## Submitting a Pull Request (PR) 🛠️
15
+
16
+ Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
17
+
18
+ ### 1. Select File to Update
19
+
20
+ Select `requirements.txt` to update by clicking on it in GitHub.
21
+ <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
22
+
23
+ ### 2. Click 'Edit this file'
24
+
25
+ Button is in top-right corner.
26
+ <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
27
+
28
+ ### 3. Make Changes
29
+
30
+ Change `matplotlib` version from `3.2.2` to `3.3`.
31
+ <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
32
+
33
+ ### 4. Preview Changes and Submit PR
34
+
35
+ Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
36
+ for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
37
+ changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
38
+ <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
39
+
40
+ ### PR recommendations
41
+
42
+ To allow your work to be integrated as seamlessly as possible, we advise you to:
43
+
44
+ - ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an
45
+ automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may
46
+ be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature'
47
+ with the name of your local branch:
48
+
49
+ ```bash
50
+ git remote add upstream https://github.com/ultralytics/yolov5.git
51
+ git fetch upstream
52
+ git checkout feature # <----- replace 'feature' with local branch name
53
+ git merge upstream/master
54
+ git push -u origin -f
55
+ ```
56
+
57
+ - ✅ Verify all Continuous Integration (CI) **checks are passing**.
58
+ - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
59
+ but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
60
+
61
+ ## Submitting a Bug Report 🐛
62
+
63
+ If you spot a problem with YOLOv5 please submit a Bug Report!
64
+
65
+ For us to start investigating a possibel problem we need to be able to reproduce it ourselves first. We've created a few
66
+ short guidelines below to help users provide what we need in order to get started.
67
+
68
+ When asking a question, people will be better able to provide help if you provide **code** that they can easily
69
+ understand and use to **reproduce** the problem. This is referred to by community members as creating
70
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
71
+ the problem should be:
72
+
73
+ * ✅ **Minimal** – Use as little code as possible that still produces the same problem
74
+ * ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
75
+ * ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
76
+
77
+ In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
78
+ should be:
79
+
80
+ * ✅ **Current** – Verify that your code is up-to-date with current
81
+ GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
82
+ copy to ensure your problem has not already been resolved by previous commits.
83
+ * ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
84
+ repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
85
+
86
+ If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
87
+ Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
88
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
89
+ understand and diagnose your problem.
90
+
91
+ ## License
92
+
93
+ By contributing, you agree that your contributions will be licensed under
94
+ the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
Dockerfile ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
4
+ # FROM nvcr.io/nvidia/pytorch:21.05-py3
5
+
6
+ # # Install linux packages
7
+ # RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
8
+
9
+ # # Install python dependencies
10
+ # COPY requirements.txt .
11
+ # RUN python -m pip install --upgrade pip
12
+ # RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
13
+ # RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook
14
+ # RUN pip install --no-cache -U torch torchvision numpy
15
+ # # RUN pip install --no-cache torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
16
+
17
+ # # Create working directory
18
+ # RUN mkdir -p /usr/src/app
19
+ # WORKDIR /usr/src/app
20
+
21
+ # # Copy contents
22
+ # COPY . /usr/src/app
23
+
24
+ # # Set environment variables
25
+ # ENV HOME=/usr/src/app
26
+
27
+
28
+ # Usage Examples -------------------------------------------------------------------------------------------------------
29
+
30
+ # Build and Push
31
+ # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
32
+
33
+ # Pull and Run
34
+ # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
35
+
36
+ # Pull and Run with local directory access
37
+ # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
38
+
39
+ # Kill all
40
+ # sudo docker kill $(sudo docker ps -q)
41
+
42
+ # Kill all image-based
43
+ # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
44
+
45
+ # Bash into running container
46
+ # sudo docker exec -it 5a9b5863d93d bash
47
+
48
+ # Bash into stopped container
49
+ # id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
50
+
51
+ # Clean up
52
+ # docker system prune -a --volumes
53
+ FROM python:3.9
54
+ EXPOSE 8501
55
+ WORKDIR /app
56
+ COPY requirements.txt ./requirements.txt
57
+ RUN pip3 install -r requirements.txt
58
+ COPY . .
59
+ # CMD streamlit run app.py
60
+ CMD streamlit run --server.port $PORT app.py
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <http://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
Planogram_compliance_inference.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Procfile ADDED
@@ -0,0 +1 @@
 
 
1
+ web: sh setup.sh && streamlit run app.py
README.md CHANGED
@@ -1,13 +1,166 @@
1
  ---
2
- title: Plano Lit
3
- emoji: 🚀
4
- colorFrom: purple
5
- colorTo: red
6
  sdk: streamlit
7
- sdk_version: 1.33.0
8
  app_file: app.py
9
  pinned: false
10
- license: apache-2.0
11
  ---
 
 
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
2
  sdk: streamlit
3
+ sdk_version: 1.10.0 # The latest supported version
4
  app_file: app.py
5
  pinned: false
6
+ fullWidth: True
7
  ---
8
+ ## <div align="center">Planogram Scoring</div>
9
+ <p>
10
 
11
+ </p>
12
+ - Train a Yolo Model on the available products in our data base to detect them on a shelf
13
+ - https://wandb.ai/abhilash001vj/YOLOv5/runs/1v6yh7nk?workspace=user-abhilash001vj
14
+ - Have the master planogram data captured as a matrix of products encoded as numbers (label encoding by looking the products names saved in a list of all - the available product names )
15
+ - Detect the products on real images from stores.
16
+ - Arrange the detected products in the captured photograph to rows and columns
17
+ - Compare the product arrangement of captured photograph to the existing master planogram and produce the compliance score for correctly placed products
18
+
19
+ </div>
20
+
21
+ ## <div align="center">YOLOv5</div>
22
+ <p>
23
+ YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
24
+ open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
25
+ </p>
26
+
27
+ </div>
28
+
29
+ ## <div align="center">Documentation</div>
30
+
31
+ See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
32
+
33
+ ## <div align="center">Quick Start Examples</div>
34
+
35
+ <details open>
36
+ <summary>Install</summary>
37
+
38
+ [**Python>=3.6.0**](https://www.python.org/) is required with all
39
+ [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
40
+ [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
41
+ <!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
42
+
43
+ ```bash
44
+ $ git clone https://github.com/ultralytics/yolov5
45
+ $ cd yolov5
46
+ $ pip install -r requirements.txt
47
+ ```
48
+
49
+ </details>
50
+
51
+ <details open>
52
+ <summary>Inference</summary>
53
+
54
+ Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
55
+ from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
56
+
57
+ ```python
58
+ import torch
59
+
60
+ # Model
61
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
62
+
63
+ # Images
64
+ img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
65
+
66
+ # Inference
67
+ results = model(img)
68
+
69
+ # Results
70
+ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
71
+ ```
72
+
73
+ </details>
74
+
75
+
76
+ ## <div align="center">Why YOLOv5</div>
77
+
78
+ <p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
79
+ <details>
80
+ <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
81
+
82
+ <p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
83
+ </details>
84
+ <details>
85
+ <summary>Figure Notes (click to expand)</summary>
86
+
87
+ * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size
88
+ 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
89
+ * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
90
+ * **Reproduce** by
91
+ `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
92
+
93
+ </details>
94
+
95
+ ### Pretrained Checkpoints
96
+
97
+ [assets]: https://github.com/ultralytics/yolov5/releases
98
+
99
+ |Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPs<br><sup>640 (B)
100
+ |--- |--- |--- |--- |--- |--- |---|--- |---
101
+ |[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
102
+ |[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3
103
+ |[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
104
+ |[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
105
+ | | | | | | | | |
106
+ |[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
107
+ |[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
108
+ |[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
109
+ |[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
110
+ | | | | | | | | |
111
+ |[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
112
+
113
+ <details>
114
+ <summary>Table Notes (click to expand)</summary>
115
+
116
+ * AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results
117
+ denote val2017 accuracy.
118
+ * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP**
119
+ by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
120
+ * Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a
121
+ GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
122
+ includes FP16 inference, postprocessing and NMS. **Reproduce speed**
123
+ by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
124
+ * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
125
+ * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale
126
+ augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
127
+
128
+ </details>
129
+
130
+ ## <div align="center">Contribute</div>
131
+
132
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see
133
+ our [Contributing Guide](CONTRIBUTING.md) to get started.
134
+
135
+ ## <div align="center">Contact</div>
136
+
137
+ For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or
138
+ professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
139
+
140
+ <br>
141
+
142
+ <div align="center">
143
+ <a href="https://github.com/ultralytics">
144
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
145
+ </a>
146
+ <img width="3%" />
147
+ <a href="https://www.linkedin.com/company/ultralytics">
148
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
149
+ </a>
150
+ <img width="3%" />
151
+ <a href="https://twitter.com/ultralytics">
152
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
153
+ </a>
154
+ <img width="3%" />
155
+ <a href="https://youtube.com/ultralytics">
156
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
157
+ </a>
158
+ <img width="3%" />
159
+ <a href="https://www.facebook.com/ultralytics">
160
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
161
+ </a>
162
+ <img width="3%" />
163
+ <a href="https://www.instagram.com/ultralytics/">
164
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
165
+ </a>
166
+ </div>
_requirements.txt ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip install -r requirements.txt
2
+ streamlit
3
+ # base ----------------------------------------
4
+ # matplotlib>=3.2.2
5
+ numpy>=1.18.5
6
+ # opencv-python>=4.1.2
7
+ # http://download.pytorch.org/whl/cpu/torch-1.7.1%2Bcpu-cp39-cp39-linux_x86_64.whl
8
+ # gunicorn == 19.9.0
9
+ # torchvision==0.2.2
10
+ opencv-python-headless>=4.1.2
11
+ Pillow>=8.0.0
12
+ PyYAML>=5.3.1
13
+ scipy>=1.4.1
14
+ torch>=1.7.0
15
+ torchvision>=0.8.1
16
+ tqdm>=4.41.0
17
+
18
+ # logging -------------------------------------
19
+ # tensorboard>=2.4.1
20
+ # wandb
21
+
22
+ # plotting ------------------------------------
23
+ # seaborn>=0.11.0
24
+ pandas
25
+
26
+ # export --------------------------------------
27
+ # coremltools>=4.1
28
+ # onnx>=1.9.0
29
+ # scikit-learn==0.19.2 # for coreml quantization
30
+ # tensorflow==2.4.1 # for TFLite export
31
+
32
+ # extras --------------------------------------
33
+ # Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
34
+ # pycocotools>=2.0 # COCO mAP
35
+ # albumentations>=1.0.3
36
+ # thop # FLOPs computation
app_test.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
detect.py ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python detect.py --weights yolov5s.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python detect.py --weights yolov5s.pt # PyTorch
19
+ yolov5s.torchscript # TorchScript
20
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s_openvino_model # OpenVINO
22
+ yolov5s.engine # TensorRT
23
+ yolov5s.mlmodel # CoreML (macOS-only)
24
+ yolov5s_saved_model # TensorFlow SavedModel
25
+ yolov5s.pb # TensorFlow GraphDef
26
+ yolov5s.tflite # TensorFlow Lite
27
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+
39
+ FILE = Path(__file__).resolve()
40
+ ROOT = FILE.parents[0] # YOLOv5 root directory
41
+ if str(ROOT) not in sys.path:
42
+ sys.path.append(str(ROOT)) # add ROOT to PATH
43
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
44
+
45
+ from models.common import DetectMultiBackend
46
+ from utils.dataloaders import (
47
+ IMG_FORMATS,
48
+ VID_FORMATS,
49
+ LoadImages,
50
+ LoadScreenshots,
51
+ LoadStreams,
52
+ )
53
+ from utils.general import (
54
+ LOGGER,
55
+ Profile,
56
+ check_file,
57
+ check_img_size,
58
+ check_imshow,
59
+ check_requirements,
60
+ colorstr,
61
+ cv2,
62
+ increment_path,
63
+ non_max_suppression,
64
+ print_args,
65
+ scale_boxes,
66
+ strip_optimizer,
67
+ xyxy2xywh,
68
+ )
69
+ from utils.plots import Annotator, colors, save_one_box
70
+ from utils.torch_utils import select_device, smart_inference_mode
71
+
72
+
73
+ @smart_inference_mode()
74
+ def run(
75
+ weights=ROOT / "yolov5s.pt", # model path or triton URL
76
+ source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
77
+ data=ROOT / "data/coco128.yaml", # dataset.yaml path
78
+ imgsz=(640, 640), # inference size (height, width)
79
+ conf_thres=0.25, # confidence threshold
80
+ iou_thres=0.45, # NMS IOU threshold
81
+ max_det=1000, # maximum detections per image
82
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
83
+ view_img=False, # show results
84
+ save_txt=False, # save results to *.txt
85
+ save_conf=False, # save confidences in --save-txt labels
86
+ save_crop=False, # save cropped prediction boxes
87
+ nosave=False, # do not save images/videos
88
+ classes=None, # filter by class: --class 0, or --class 0 2 3
89
+ agnostic_nms=False, # class-agnostic NMS
90
+ augment=False, # augmented inference
91
+ visualize=False, # visualize features
92
+ update=False, # update all models
93
+ project=ROOT / "runs/detect", # save results to project/name
94
+ name="exp", # save results to project/name
95
+ exist_ok=False, # existing project/name ok, do not increment
96
+ line_thickness=3, # bounding box thickness (pixels)
97
+ hide_labels=False, # hide labels
98
+ hide_conf=False, # hide confidences
99
+ half=False, # use FP16 half-precision inference
100
+ dnn=False, # use OpenCV DNN for ONNX inference
101
+ vid_stride=1, # video frame-rate stride
102
+ ):
103
+ source = str(source)
104
+ save_img = not nosave and not source.endswith(
105
+ ".txt"
106
+ ) # save inference images
107
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
108
+ is_url = source.lower().startswith(
109
+ ("rtsp://", "rtmp://", "http://", "https://")
110
+ )
111
+ webcam = (
112
+ source.isnumeric()
113
+ or source.endswith(".streams")
114
+ or (is_url and not is_file)
115
+ )
116
+ screenshot = source.lower().startswith("screen")
117
+ if is_url and is_file:
118
+ source = check_file(source) # download
119
+
120
+ # Directories
121
+ save_dir = increment_path(
122
+ Path(project) / name, exist_ok=exist_ok
123
+ ) # increment run
124
+ (save_dir / "labels" if save_txt else save_dir).mkdir(
125
+ parents=True, exist_ok=True
126
+ ) # make dir
127
+
128
+ # Load model
129
+ device = select_device(device)
130
+ model = DetectMultiBackend(
131
+ weights, device=device, dnn=dnn, data=data, fp16=half
132
+ )
133
+ stride, names, pt = model.stride, model.names, model.pt
134
+ imgsz = check_img_size(imgsz, s=stride) # check image size
135
+
136
+ # Dataloader
137
+ bs = 1 # batch_size
138
+ if webcam:
139
+ view_img = check_imshow(warn=True)
140
+ dataset = LoadStreams(
141
+ source,
142
+ img_size=imgsz,
143
+ stride=stride,
144
+ auto=pt,
145
+ vid_stride=vid_stride,
146
+ )
147
+ bs = len(dataset)
148
+ elif screenshot:
149
+ dataset = LoadScreenshots(
150
+ source, img_size=imgsz, stride=stride, auto=pt
151
+ )
152
+ else:
153
+ dataset = LoadImages(
154
+ source,
155
+ img_size=imgsz,
156
+ stride=stride,
157
+ auto=pt,
158
+ vid_stride=vid_stride,
159
+ )
160
+ vid_path, vid_writer = [None] * bs, [None] * bs
161
+
162
+ # Run inference
163
+ model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
164
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
165
+ for path, im, im0s, vid_cap, s in dataset:
166
+ with dt[0]:
167
+ im = torch.from_numpy(im).to(model.device)
168
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
169
+ im /= 255 # 0 - 255 to 0.0 - 1.0
170
+ if len(im.shape) == 3:
171
+ im = im[None] # expand for batch dim
172
+
173
+ # Inference
174
+ with dt[1]:
175
+ visualize = (
176
+ increment_path(save_dir / Path(path).stem, mkdir=True)
177
+ if visualize
178
+ else False
179
+ )
180
+ pred = model(im, augment=augment, visualize=visualize)
181
+
182
+ # NMS
183
+ with dt[2]:
184
+ pred = non_max_suppression(
185
+ pred,
186
+ conf_thres,
187
+ iou_thres,
188
+ classes,
189
+ agnostic_nms,
190
+ max_det=max_det,
191
+ )
192
+
193
+ # Second-stage classifier (optional)
194
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
195
+
196
+ # Process predictions
197
+ for i, det in enumerate(pred): # per image
198
+ seen += 1
199
+ if webcam: # batch_size >= 1
200
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
201
+ s += f"{i}: "
202
+ else:
203
+ p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
204
+
205
+ p = Path(p) # to Path
206
+ save_path = str(save_dir / p.name) # im.jpg
207
+ txt_path = str(save_dir / "labels" / p.stem) + (
208
+ "" if dataset.mode == "image" else f"_{frame}"
209
+ ) # im.txt
210
+ s += "%gx%g " % im.shape[2:] # print string
211
+ gn = torch.tensor(im0.shape)[
212
+ [1, 0, 1, 0]
213
+ ] # normalization gain whwh
214
+ imc = im0.copy() if save_crop else im0 # for save_crop
215
+ annotator = Annotator(
216
+ im0, line_width=line_thickness, example=str(names)
217
+ )
218
+ if len(det):
219
+ # Rescale boxes from img_size to im0 size
220
+ det[:, :4] = scale_boxes(
221
+ im.shape[2:], det[:, :4], im0.shape
222
+ ).round()
223
+
224
+ # Print results
225
+ for c in det[:, 5].unique():
226
+ n = (det[:, 5] == c).sum() # detections per class
227
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
228
+
229
+ # Write results
230
+ for *xyxy, conf, cls in reversed(det):
231
+ if save_txt: # Write to file
232
+ xywh = (
233
+ (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
234
+ .view(-1)
235
+ .tolist()
236
+ ) # normalized xywh
237
+ line = (
238
+ (cls, *xywh, conf) if save_conf else (cls, *xywh)
239
+ ) # label format
240
+ with open(f"{txt_path}.txt", "a") as f:
241
+ f.write(("%g " * len(line)).rstrip() % line + "\n")
242
+
243
+ if save_img or save_crop or view_img: # Add bbox to image
244
+ c = int(cls) # integer class
245
+ label = (
246
+ None
247
+ if hide_labels
248
+ else (
249
+ names[c]
250
+ if hide_conf
251
+ else f"{names[c]} {conf:.2f}"
252
+ )
253
+ )
254
+ annotator.box_label(xyxy, label, color=colors(c, True))
255
+ if save_crop:
256
+ save_one_box(
257
+ xyxy,
258
+ imc,
259
+ file=save_dir
260
+ / "crops"
261
+ / names[c]
262
+ / f"{p.stem}.jpg",
263
+ BGR=True,
264
+ )
265
+
266
+ # Stream results
267
+ im0 = annotator.result()
268
+ if view_img:
269
+ if platform.system() == "Linux" and p not in windows:
270
+ windows.append(p)
271
+ cv2.namedWindow(
272
+ str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO
273
+ ) # allow window resize (Linux)
274
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
275
+ cv2.imshow(str(p), im0)
276
+ cv2.waitKey(1) # 1 millisecond
277
+
278
+ # Save results (image with detections)
279
+ if save_img:
280
+ if dataset.mode == "image":
281
+ cv2.imwrite(save_path, im0)
282
+ else: # 'video' or 'stream'
283
+ if vid_path[i] != save_path: # new video
284
+ vid_path[i] = save_path
285
+ if isinstance(vid_writer[i], cv2.VideoWriter):
286
+ vid_writer[
287
+ i
288
+ ].release() # release previous video writer
289
+ if vid_cap: # video
290
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
291
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
292
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
293
+ else: # stream
294
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
295
+ save_path = str(
296
+ Path(save_path).with_suffix(".mp4")
297
+ ) # force *.mp4 suffix on results videos
298
+ vid_writer[i] = cv2.VideoWriter(
299
+ save_path,
300
+ cv2.VideoWriter_fourcc(*"mp4v"),
301
+ fps,
302
+ (w, h),
303
+ )
304
+ vid_writer[i].write(im0)
305
+
306
+ # Print time (inference-only)
307
+ LOGGER.info(
308
+ f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms"
309
+ )
310
+
311
+ # Print results
312
+ t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
313
+ LOGGER.info(
314
+ f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
315
+ % t
316
+ )
317
+ if save_txt or save_img:
318
+ s = (
319
+ f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
320
+ if save_txt
321
+ else ""
322
+ )
323
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
324
+ if update:
325
+ strip_optimizer(
326
+ weights[0]
327
+ ) # update model (to fix SourceChangeWarning)
328
+
329
+
330
+ def parse_opt():
331
+ parser = argparse.ArgumentParser()
332
+ parser.add_argument(
333
+ "--weights",
334
+ nargs="+",
335
+ type=str,
336
+ default=ROOT / "yolov5s.pt",
337
+ help="model path or triton URL",
338
+ )
339
+ parser.add_argument(
340
+ "--source",
341
+ type=str,
342
+ default=ROOT / "data/images",
343
+ help="file/dir/URL/glob/screen/0(webcam)",
344
+ )
345
+ parser.add_argument(
346
+ "--data",
347
+ type=str,
348
+ default=ROOT / "data/coco128.yaml",
349
+ help="(optional) dataset.yaml path",
350
+ )
351
+ parser.add_argument(
352
+ "--imgsz",
353
+ "--img",
354
+ "--img-size",
355
+ nargs="+",
356
+ type=int,
357
+ default=[640],
358
+ help="inference size h,w",
359
+ )
360
+ parser.add_argument(
361
+ "--conf-thres", type=float, default=0.25, help="confidence threshold"
362
+ )
363
+ parser.add_argument(
364
+ "--iou-thres", type=float, default=0.45, help="NMS IoU threshold"
365
+ )
366
+ parser.add_argument(
367
+ "--max-det",
368
+ type=int,
369
+ default=1000,
370
+ help="maximum detections per image",
371
+ )
372
+ parser.add_argument(
373
+ "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
374
+ )
375
+ parser.add_argument("--view-img", action="store_true", help="show results")
376
+ parser.add_argument(
377
+ "--save-txt", action="store_true", help="save results to *.txt"
378
+ )
379
+ parser.add_argument(
380
+ "--save-conf",
381
+ action="store_true",
382
+ help="save confidences in --save-txt labels",
383
+ )
384
+ parser.add_argument(
385
+ "--save-crop",
386
+ action="store_true",
387
+ help="save cropped prediction boxes",
388
+ )
389
+ parser.add_argument(
390
+ "--nosave", action="store_true", help="do not save images/videos"
391
+ )
392
+ parser.add_argument(
393
+ "--classes",
394
+ nargs="+",
395
+ type=int,
396
+ help="filter by class: --classes 0, or --classes 0 2 3",
397
+ )
398
+ parser.add_argument(
399
+ "--agnostic-nms", action="store_true", help="class-agnostic NMS"
400
+ )
401
+ parser.add_argument(
402
+ "--augment", action="store_true", help="augmented inference"
403
+ )
404
+ parser.add_argument(
405
+ "--visualize", action="store_true", help="visualize features"
406
+ )
407
+ parser.add_argument(
408
+ "--update", action="store_true", help="update all models"
409
+ )
410
+ parser.add_argument(
411
+ "--project",
412
+ default=ROOT / "runs/detect",
413
+ help="save results to project/name",
414
+ )
415
+ parser.add_argument(
416
+ "--name", default="exp", help="save results to project/name"
417
+ )
418
+ parser.add_argument(
419
+ "--exist-ok",
420
+ action="store_true",
421
+ help="existing project/name ok, do not increment",
422
+ )
423
+ parser.add_argument(
424
+ "--line-thickness",
425
+ default=3,
426
+ type=int,
427
+ help="bounding box thickness (pixels)",
428
+ )
429
+ parser.add_argument(
430
+ "--hide-labels", default=False, action="store_true", help="hide labels"
431
+ )
432
+ parser.add_argument(
433
+ "--hide-conf",
434
+ default=False,
435
+ action="store_true",
436
+ help="hide confidences",
437
+ )
438
+ parser.add_argument(
439
+ "--half", action="store_true", help="use FP16 half-precision inference"
440
+ )
441
+ parser.add_argument(
442
+ "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference"
443
+ )
444
+ parser.add_argument(
445
+ "--vid-stride", type=int, default=1, help="video frame-rate stride"
446
+ )
447
+ opt = parser.parse_args()
448
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
449
+ print_args(vars(opt))
450
+ return opt
451
+
452
+
453
+ def main(opt):
454
+ check_requirements(exclude=("tensorboard", "thop"))
455
+ run(**vars(opt))
456
+
457
+
458
+ if __name__ == "__main__":
459
+ opt = parse_opt()
460
+ main(opt)
export.py ADDED
@@ -0,0 +1,1013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+ PaddlePaddle | `paddle` | yolov5s_paddle_model/
19
+
20
+ Requirements:
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
22
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
23
+
24
+ Usage:
25
+ $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
26
+
27
+ Inference:
28
+ $ python detect.py --weights yolov5s.pt # PyTorch
29
+ yolov5s.torchscript # TorchScript
30
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
31
+ yolov5s_openvino_model # OpenVINO
32
+ yolov5s.engine # TensorRT
33
+ yolov5s.mlmodel # CoreML (macOS-only)
34
+ yolov5s_saved_model # TensorFlow SavedModel
35
+ yolov5s.pb # TensorFlow GraphDef
36
+ yolov5s.tflite # TensorFlow Lite
37
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
38
+ yolov5s_paddle_model # PaddlePaddle
39
+
40
+ TensorFlow.js:
41
+ $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
42
+ $ npm install
43
+ $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
44
+ $ npm start
45
+ """
46
+
47
+ import argparse
48
+ import contextlib
49
+ import json
50
+ import os
51
+ import platform
52
+ import re
53
+ import subprocess
54
+ import sys
55
+ import time
56
+ import warnings
57
+ from pathlib import Path
58
+
59
+ import pandas as pd
60
+ import torch
61
+ from torch.utils.mobile_optimizer import optimize_for_mobile
62
+
63
+ FILE = Path(__file__).resolve()
64
+ ROOT = FILE.parents[0] # YOLOv5 root directory
65
+ if str(ROOT) not in sys.path:
66
+ sys.path.append(str(ROOT)) # add ROOT to PATH
67
+ if platform.system() != "Windows":
68
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
69
+
70
+ from models.experimental import attempt_load
71
+ from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
72
+ from utils.dataloaders import LoadImages
73
+ from utils.general import (
74
+ LOGGER,
75
+ Profile,
76
+ check_dataset,
77
+ check_img_size,
78
+ check_requirements,
79
+ check_version,
80
+ check_yaml,
81
+ colorstr,
82
+ file_size,
83
+ get_default_args,
84
+ print_args,
85
+ url2file,
86
+ yaml_save,
87
+ )
88
+ from utils.torch_utils import select_device, smart_inference_mode
89
+
90
+ MACOS = platform.system() == "Darwin" # macOS environment
91
+
92
+
93
+ def export_formats():
94
+ # YOLOv5 export formats
95
+ x = [
96
+ ["PyTorch", "-", ".pt", True, True],
97
+ ["TorchScript", "torchscript", ".torchscript", True, True],
98
+ ["ONNX", "onnx", ".onnx", True, True],
99
+ ["OpenVINO", "openvino", "_openvino_model", True, False],
100
+ ["TensorRT", "engine", ".engine", False, True],
101
+ ["CoreML", "coreml", ".mlmodel", True, False],
102
+ ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
103
+ ["TensorFlow GraphDef", "pb", ".pb", True, True],
104
+ ["TensorFlow Lite", "tflite", ".tflite", True, False],
105
+ ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
106
+ ["TensorFlow.js", "tfjs", "_web_model", False, False],
107
+ ["PaddlePaddle", "paddle", "_paddle_model", True, True],
108
+ ]
109
+ return pd.DataFrame(
110
+ x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"]
111
+ )
112
+
113
+
114
+ def try_export(inner_func):
115
+ # YOLOv5 export decorator, i..e @try_export
116
+ inner_args = get_default_args(inner_func)
117
+
118
+ def outer_func(*args, **kwargs):
119
+ prefix = inner_args["prefix"]
120
+ try:
121
+ with Profile() as dt:
122
+ f, model = inner_func(*args, **kwargs)
123
+ LOGGER.info(
124
+ f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)"
125
+ )
126
+ return f, model
127
+ except Exception as e:
128
+ LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
129
+ return None, None
130
+
131
+ return outer_func
132
+
133
+
134
+ @try_export
135
+ def export_torchscript(
136
+ model, im, file, optimize, prefix=colorstr("TorchScript:")
137
+ ):
138
+ # YOLOv5 TorchScript model export
139
+ LOGGER.info(
140
+ f"\n{prefix} starting export with torch {torch.__version__}..."
141
+ )
142
+ f = file.with_suffix(".torchscript")
143
+
144
+ ts = torch.jit.trace(model, im, strict=False)
145
+ d = {
146
+ "shape": im.shape,
147
+ "stride": int(max(model.stride)),
148
+ "names": model.names,
149
+ }
150
+ extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
151
+ if (
152
+ optimize
153
+ ): # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
154
+ optimize_for_mobile(ts)._save_for_lite_interpreter(
155
+ str(f), _extra_files=extra_files
156
+ )
157
+ else:
158
+ ts.save(str(f), _extra_files=extra_files)
159
+ return f, None
160
+
161
+
162
+ @try_export
163
+ def export_onnx(
164
+ model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")
165
+ ):
166
+ # YOLOv5 ONNX export
167
+ check_requirements("onnx>=1.12.0")
168
+ import onnx
169
+
170
+ LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
171
+ f = file.with_suffix(".onnx")
172
+
173
+ output_names = (
174
+ ["output0", "output1"]
175
+ if isinstance(model, SegmentationModel)
176
+ else ["output0"]
177
+ )
178
+ if dynamic:
179
+ dynamic = {
180
+ "images": {0: "batch", 2: "height", 3: "width"}
181
+ } # shape(1,3,640,640)
182
+ if isinstance(model, SegmentationModel):
183
+ dynamic["output0"] = {
184
+ 0: "batch",
185
+ 1: "anchors",
186
+ } # shape(1,25200,85)
187
+ dynamic["output1"] = {
188
+ 0: "batch",
189
+ 2: "mask_height",
190
+ 3: "mask_width",
191
+ } # shape(1,32,160,160)
192
+ elif isinstance(model, DetectionModel):
193
+ dynamic["output0"] = {
194
+ 0: "batch",
195
+ 1: "anchors",
196
+ } # shape(1,25200,85)
197
+
198
+ torch.onnx.export(
199
+ model.cpu()
200
+ if dynamic
201
+ else model, # --dynamic only compatible with cpu
202
+ im.cpu() if dynamic else im,
203
+ f,
204
+ verbose=False,
205
+ opset_version=opset,
206
+ do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
207
+ input_names=["images"],
208
+ output_names=output_names,
209
+ dynamic_axes=dynamic or None,
210
+ )
211
+
212
+ # Checks
213
+ model_onnx = onnx.load(f) # load onnx model
214
+ onnx.checker.check_model(model_onnx) # check onnx model
215
+
216
+ # Metadata
217
+ d = {"stride": int(max(model.stride)), "names": model.names}
218
+ for k, v in d.items():
219
+ meta = model_onnx.metadata_props.add()
220
+ meta.key, meta.value = k, str(v)
221
+ onnx.save(model_onnx, f)
222
+
223
+ # Simplify
224
+ if simplify:
225
+ try:
226
+ cuda = torch.cuda.is_available()
227
+ check_requirements(
228
+ (
229
+ "onnxruntime-gpu" if cuda else "onnxruntime",
230
+ "onnx-simplifier>=0.4.1",
231
+ )
232
+ )
233
+ import onnxsim
234
+
235
+ LOGGER.info(
236
+ f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}..."
237
+ )
238
+ model_onnx, check = onnxsim.simplify(model_onnx)
239
+ assert check, "assert check failed"
240
+ onnx.save(model_onnx, f)
241
+ except Exception as e:
242
+ LOGGER.info(f"{prefix} simplifier failure: {e}")
243
+ return f, model_onnx
244
+
245
+
246
+ @try_export
247
+ def export_openvino(file, metadata, half, prefix=colorstr("OpenVINO:")):
248
+ # YOLOv5 OpenVINO export
249
+ check_requirements(
250
+ "openvino-dev"
251
+ ) # requires openvino-dev: https://pypi.org/project/openvino-dev/
252
+ import openvino.inference_engine as ie
253
+
254
+ LOGGER.info(
255
+ f"\n{prefix} starting export with openvino {ie.__version__}..."
256
+ )
257
+ f = str(file).replace(".pt", f"_openvino_model{os.sep}")
258
+
259
+ cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
260
+ subprocess.run(cmd.split(), check=True, env=os.environ) # export
261
+ yaml_save(
262
+ Path(f) / file.with_suffix(".yaml").name, metadata
263
+ ) # add metadata.yaml
264
+ return f, None
265
+
266
+
267
+ @try_export
268
+ def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
269
+ # YOLOv5 Paddle export
270
+ check_requirements(("paddlepaddle", "x2paddle"))
271
+ import x2paddle
272
+ from x2paddle.convert import pytorch2paddle
273
+
274
+ LOGGER.info(
275
+ f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}..."
276
+ )
277
+ f = str(file).replace(".pt", f"_paddle_model{os.sep}")
278
+
279
+ pytorch2paddle(
280
+ module=model, save_dir=f, jit_type="trace", input_examples=[im]
281
+ ) # export
282
+ yaml_save(
283
+ Path(f) / file.with_suffix(".yaml").name, metadata
284
+ ) # add metadata.yaml
285
+ return f, None
286
+
287
+
288
+ @try_export
289
+ def export_coreml(model, im, file, int8, half, prefix=colorstr("CoreML:")):
290
+ # YOLOv5 CoreML export
291
+ check_requirements("coremltools")
292
+ import coremltools as ct
293
+
294
+ LOGGER.info(
295
+ f"\n{prefix} starting export with coremltools {ct.__version__}..."
296
+ )
297
+ f = file.with_suffix(".mlmodel")
298
+
299
+ ts = torch.jit.trace(model, im, strict=False) # TorchScript model
300
+ ct_model = ct.convert(
301
+ ts,
302
+ inputs=[
303
+ ct.ImageType(
304
+ "image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0]
305
+ )
306
+ ],
307
+ )
308
+ bits, mode = (
309
+ (8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None)
310
+ )
311
+ if bits < 32:
312
+ if MACOS: # quantization only supported on macOS
313
+ with warnings.catch_warnings():
314
+ warnings.filterwarnings(
315
+ "ignore", category=DeprecationWarning
316
+ ) # suppress numpy==1.20 float warning
317
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(
318
+ ct_model, bits, mode
319
+ )
320
+ else:
321
+ print(
322
+ f"{prefix} quantization only supported on macOS, skipping..."
323
+ )
324
+ ct_model.save(f)
325
+ return f, ct_model
326
+
327
+
328
+ @try_export
329
+ def export_engine(
330
+ model,
331
+ im,
332
+ file,
333
+ half,
334
+ dynamic,
335
+ simplify,
336
+ workspace=4,
337
+ verbose=False,
338
+ prefix=colorstr("TensorRT:"),
339
+ ):
340
+ # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
341
+ assert (
342
+ im.device.type != "cpu"
343
+ ), "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
344
+ try:
345
+ import tensorrt as trt
346
+ except Exception:
347
+ if platform.system() == "Linux":
348
+ check_requirements(
349
+ "nvidia-tensorrt",
350
+ cmds="-U --index-url https://pypi.ngc.nvidia.com",
351
+ )
352
+ import tensorrt as trt
353
+
354
+ if (
355
+ trt.__version__[0] == "7"
356
+ ): # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
357
+ grid = model.model[-1].anchor_grid
358
+ model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
359
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
360
+ model.model[-1].anchor_grid = grid
361
+ else: # TensorRT >= 8
362
+ check_version(
363
+ trt.__version__, "8.0.0", hard=True
364
+ ) # require tensorrt>=8.0.0
365
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
366
+ onnx = file.with_suffix(".onnx")
367
+
368
+ LOGGER.info(
369
+ f"\n{prefix} starting export with TensorRT {trt.__version__}..."
370
+ )
371
+ assert onnx.exists(), f"failed to export ONNX file: {onnx}"
372
+ f = file.with_suffix(".engine") # TensorRT engine file
373
+ logger = trt.Logger(trt.Logger.INFO)
374
+ if verbose:
375
+ logger.min_severity = trt.Logger.Severity.VERBOSE
376
+
377
+ builder = trt.Builder(logger)
378
+ config = builder.create_builder_config()
379
+ config.max_workspace_size = workspace * 1 << 30
380
+ # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
381
+
382
+ flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
383
+ network = builder.create_network(flag)
384
+ parser = trt.OnnxParser(network, logger)
385
+ if not parser.parse_from_file(str(onnx)):
386
+ raise RuntimeError(f"failed to load ONNX file: {onnx}")
387
+
388
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
389
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
390
+ for inp in inputs:
391
+ LOGGER.info(
392
+ f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}'
393
+ )
394
+ for out in outputs:
395
+ LOGGER.info(
396
+ f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}'
397
+ )
398
+
399
+ if dynamic:
400
+ if im.shape[0] <= 1:
401
+ LOGGER.warning(
402
+ f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument"
403
+ )
404
+ profile = builder.create_optimization_profile()
405
+ for inp in inputs:
406
+ profile.set_shape(
407
+ inp.name,
408
+ (1, *im.shape[1:]),
409
+ (max(1, im.shape[0] // 2), *im.shape[1:]),
410
+ im.shape,
411
+ )
412
+ config.add_optimization_profile(profile)
413
+
414
+ LOGGER.info(
415
+ f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}"
416
+ )
417
+ if builder.platform_has_fast_fp16 and half:
418
+ config.set_flag(trt.BuilderFlag.FP16)
419
+ with builder.build_engine(network, config) as engine, open(f, "wb") as t:
420
+ t.write(engine.serialize())
421
+ return f, None
422
+
423
+
424
+ @try_export
425
+ def export_saved_model(
426
+ model,
427
+ im,
428
+ file,
429
+ dynamic,
430
+ tf_nms=False,
431
+ agnostic_nms=False,
432
+ topk_per_class=100,
433
+ topk_all=100,
434
+ iou_thres=0.45,
435
+ conf_thres=0.25,
436
+ keras=False,
437
+ prefix=colorstr("TensorFlow SavedModel:"),
438
+ ):
439
+ # YOLOv5 TensorFlow SavedModel export
440
+ try:
441
+ import tensorflow as tf
442
+ except Exception:
443
+ check_requirements(
444
+ f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}"
445
+ )
446
+ import tensorflow as tf
447
+ from tensorflow.python.framework.convert_to_constants import (
448
+ convert_variables_to_constants_v2,
449
+ )
450
+
451
+ from models.tf import TFModel
452
+
453
+ LOGGER.info(
454
+ f"\n{prefix} starting export with tensorflow {tf.__version__}..."
455
+ )
456
+ f = str(file).replace(".pt", "_saved_model")
457
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
458
+
459
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
460
+ im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
461
+ _ = tf_model.predict(
462
+ im,
463
+ tf_nms,
464
+ agnostic_nms,
465
+ topk_per_class,
466
+ topk_all,
467
+ iou_thres,
468
+ conf_thres,
469
+ )
470
+ inputs = tf.keras.Input(
471
+ shape=(*imgsz, ch), batch_size=None if dynamic else batch_size
472
+ )
473
+ outputs = tf_model.predict(
474
+ inputs,
475
+ tf_nms,
476
+ agnostic_nms,
477
+ topk_per_class,
478
+ topk_all,
479
+ iou_thres,
480
+ conf_thres,
481
+ )
482
+ keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
483
+ keras_model.trainable = False
484
+ keras_model.summary()
485
+ if keras:
486
+ keras_model.save(f, save_format="tf")
487
+ else:
488
+ spec = tf.TensorSpec(
489
+ keras_model.inputs[0].shape, keras_model.inputs[0].dtype
490
+ )
491
+ m = tf.function(lambda x: keras_model(x)) # full model
492
+ m = m.get_concrete_function(spec)
493
+ frozen_func = convert_variables_to_constants_v2(m)
494
+ tfm = tf.Module()
495
+ tfm.__call__ = tf.function(
496
+ lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]
497
+ )
498
+ tfm.__call__(im)
499
+ tf.saved_model.save(
500
+ tfm,
501
+ f,
502
+ options=tf.saved_model.SaveOptions(
503
+ experimental_custom_gradients=False
504
+ )
505
+ if check_version(tf.__version__, "2.6")
506
+ else tf.saved_model.SaveOptions(),
507
+ )
508
+ return f, keras_model
509
+
510
+
511
+ @try_export
512
+ def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
513
+ # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
514
+ import tensorflow as tf
515
+ from tensorflow.python.framework.convert_to_constants import (
516
+ convert_variables_to_constants_v2,
517
+ )
518
+
519
+ LOGGER.info(
520
+ f"\n{prefix} starting export with tensorflow {tf.__version__}..."
521
+ )
522
+ f = file.with_suffix(".pb")
523
+
524
+ m = tf.function(lambda x: keras_model(x)) # full model
525
+ m = m.get_concrete_function(
526
+ tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
527
+ )
528
+ frozen_func = convert_variables_to_constants_v2(m)
529
+ frozen_func.graph.as_graph_def()
530
+ tf.io.write_graph(
531
+ graph_or_graph_def=frozen_func.graph,
532
+ logdir=str(f.parent),
533
+ name=f.name,
534
+ as_text=False,
535
+ )
536
+ return f, None
537
+
538
+
539
+ @try_export
540
+ def export_tflite(
541
+ keras_model,
542
+ im,
543
+ file,
544
+ int8,
545
+ data,
546
+ nms,
547
+ agnostic_nms,
548
+ prefix=colorstr("TensorFlow Lite:"),
549
+ ):
550
+ # YOLOv5 TensorFlow Lite export
551
+ import tensorflow as tf
552
+
553
+ LOGGER.info(
554
+ f"\n{prefix} starting export with tensorflow {tf.__version__}..."
555
+ )
556
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
557
+ f = str(file).replace(".pt", "-fp16.tflite")
558
+
559
+ converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
560
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
561
+ converter.target_spec.supported_types = [tf.float16]
562
+ converter.optimizations = [tf.lite.Optimize.DEFAULT]
563
+ if int8:
564
+ from models.tf import representative_dataset_gen
565
+
566
+ dataset = LoadImages(
567
+ check_dataset(check_yaml(data))["train"],
568
+ img_size=imgsz,
569
+ auto=False,
570
+ )
571
+ converter.representative_dataset = lambda: representative_dataset_gen(
572
+ dataset, ncalib=100
573
+ )
574
+ converter.target_spec.supported_ops = [
575
+ tf.lite.OpsSet.TFLITE_BUILTINS_INT8
576
+ ]
577
+ converter.target_spec.supported_types = []
578
+ converter.inference_input_type = tf.uint8 # or tf.int8
579
+ converter.inference_output_type = tf.uint8 # or tf.int8
580
+ converter.experimental_new_quantizer = True
581
+ f = str(file).replace(".pt", "-int8.tflite")
582
+ if nms or agnostic_nms:
583
+ converter.target_spec.supported_ops.append(
584
+ tf.lite.OpsSet.SELECT_TF_OPS
585
+ )
586
+
587
+ tflite_model = converter.convert()
588
+ open(f, "wb").write(tflite_model)
589
+ return f, None
590
+
591
+
592
+ @try_export
593
+ def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
594
+ # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
595
+ cmd = "edgetpu_compiler --version"
596
+ help_url = "https://coral.ai/docs/edgetpu/compiler/"
597
+ assert (
598
+ platform.system() == "Linux"
599
+ ), f"export only supported on Linux. See {help_url}"
600
+ if subprocess.run(f"{cmd} >/dev/null", shell=True).returncode != 0:
601
+ LOGGER.info(
602
+ f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}"
603
+ )
604
+ sudo = (
605
+ subprocess.run("sudo --version >/dev/null", shell=True).returncode
606
+ == 0
607
+ ) # sudo installed on system
608
+ for c in (
609
+ "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
610
+ 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
611
+ "sudo apt-get update",
612
+ "sudo apt-get install edgetpu-compiler",
613
+ ):
614
+ subprocess.run(
615
+ c if sudo else c.replace("sudo ", ""), shell=True, check=True
616
+ )
617
+ ver = (
618
+ subprocess.run(cmd, shell=True, capture_output=True, check=True)
619
+ .stdout.decode()
620
+ .split()[-1]
621
+ )
622
+
623
+ LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
624
+ f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
625
+ f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
626
+
627
+ cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
628
+ subprocess.run(cmd.split(), check=True)
629
+ return f, None
630
+
631
+
632
+ @try_export
633
+ def export_tfjs(file, prefix=colorstr("TensorFlow.js:")):
634
+ # YOLOv5 TensorFlow.js export
635
+ check_requirements("tensorflowjs")
636
+ import tensorflowjs as tfjs
637
+
638
+ LOGGER.info(
639
+ f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}..."
640
+ )
641
+ f = str(file).replace(".pt", "_web_model") # js dir
642
+ f_pb = file.with_suffix(".pb") # *.pb path
643
+ f_json = f"{f}/model.json" # *.json path
644
+
645
+ cmd = (
646
+ f"tensorflowjs_converter --input_format=tf_frozen_model "
647
+ f"--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}"
648
+ )
649
+ subprocess.run(cmd.split())
650
+
651
+ json = Path(f_json).read_text()
652
+ with open(f_json, "w") as j: # sort JSON Identity_* in ascending order
653
+ subst = re.sub(
654
+ r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
655
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
656
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
657
+ r'"Identity.?.?": {"name": "Identity.?.?"}}}',
658
+ r'{"outputs": {"Identity": {"name": "Identity"}, '
659
+ r'"Identity_1": {"name": "Identity_1"}, '
660
+ r'"Identity_2": {"name": "Identity_2"}, '
661
+ r'"Identity_3": {"name": "Identity_3"}}}',
662
+ json,
663
+ )
664
+ j.write(subst)
665
+ return f, None
666
+
667
+
668
+ def add_tflite_metadata(file, metadata, num_outputs):
669
+ # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
670
+ with contextlib.suppress(ImportError):
671
+ # check_requirements('tflite_support')
672
+ from tflite_support import flatbuffers
673
+ from tflite_support import metadata as _metadata
674
+ from tflite_support import metadata_schema_py_generated as _metadata_fb
675
+
676
+ tmp_file = Path("/tmp/meta.txt")
677
+ with open(tmp_file, "w") as meta_f:
678
+ meta_f.write(str(metadata))
679
+
680
+ model_meta = _metadata_fb.ModelMetadataT()
681
+ label_file = _metadata_fb.AssociatedFileT()
682
+ label_file.name = tmp_file.name
683
+ model_meta.associatedFiles = [label_file]
684
+
685
+ subgraph = _metadata_fb.SubGraphMetadataT()
686
+ subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
687
+ subgraph.outputTensorMetadata = [
688
+ _metadata_fb.TensorMetadataT()
689
+ ] * num_outputs
690
+ model_meta.subgraphMetadata = [subgraph]
691
+
692
+ b = flatbuffers.Builder(0)
693
+ b.Finish(
694
+ model_meta.Pack(b),
695
+ _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER,
696
+ )
697
+ metadata_buf = b.Output()
698
+
699
+ populator = _metadata.MetadataPopulator.with_model_file(file)
700
+ populator.load_metadata_buffer(metadata_buf)
701
+ populator.load_associated_files([str(tmp_file)])
702
+ populator.populate()
703
+ tmp_file.unlink()
704
+
705
+
706
+ @smart_inference_mode()
707
+ def run(
708
+ data=ROOT / "data/coco128.yaml", # 'dataset.yaml path'
709
+ weights=ROOT / "yolov5s.pt", # weights path
710
+ imgsz=(640, 640), # image (height, width)
711
+ batch_size=1, # batch size
712
+ device="cpu", # cuda device, i.e. 0 or 0,1,2,3 or cpu
713
+ include=("torchscript", "onnx"), # include formats
714
+ half=False, # FP16 half-precision export
715
+ inplace=False, # set YOLOv5 Detect() inplace=True
716
+ keras=False, # use Keras
717
+ optimize=False, # TorchScript: optimize for mobile
718
+ int8=False, # CoreML/TF INT8 quantization
719
+ dynamic=False, # ONNX/TF/TensorRT: dynamic axes
720
+ simplify=False, # ONNX: simplify model
721
+ opset=12, # ONNX: opset version
722
+ verbose=False, # TensorRT: verbose log
723
+ workspace=4, # TensorRT: workspace size (GB)
724
+ nms=False, # TF: add NMS to model
725
+ agnostic_nms=False, # TF: add agnostic NMS to model
726
+ topk_per_class=100, # TF.js NMS: topk per class to keep
727
+ topk_all=100, # TF.js NMS: topk for all classes to keep
728
+ iou_thres=0.45, # TF.js NMS: IoU threshold
729
+ conf_thres=0.25, # TF.js NMS: confidence threshold
730
+ ):
731
+ t = time.time()
732
+ include = [x.lower() for x in include] # to lowercase
733
+ fmts = tuple(export_formats()["Argument"][1:]) # --include arguments
734
+ flags = [x in include for x in fmts]
735
+ assert sum(flags) == len(
736
+ include
737
+ ), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
738
+ (
739
+ jit,
740
+ onnx,
741
+ xml,
742
+ engine,
743
+ coreml,
744
+ saved_model,
745
+ pb,
746
+ tflite,
747
+ edgetpu,
748
+ tfjs,
749
+ paddle,
750
+ ) = flags # export booleans
751
+ file = Path(
752
+ url2file(weights)
753
+ if str(weights).startswith(("http:/", "https:/"))
754
+ else weights
755
+ ) # PyTorch weights
756
+
757
+ # Load PyTorch model
758
+ device = select_device(device)
759
+ if half:
760
+ assert (
761
+ device.type != "cpu" or coreml
762
+ ), "--half only compatible with GPU export, i.e. use --device 0"
763
+ assert (
764
+ not dynamic
765
+ ), "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
766
+ model = attempt_load(
767
+ weights, device=device, inplace=True, fuse=True
768
+ ) # load FP32 model
769
+
770
+ # Checks
771
+ imgsz *= 2 if len(imgsz) == 1 else 1 # expand
772
+ if optimize:
773
+ assert (
774
+ device.type == "cpu"
775
+ ), "--optimize not compatible with cuda devices, i.e. use --device cpu"
776
+
777
+ # Input
778
+ gs = int(max(model.stride)) # grid size (max stride)
779
+ imgsz = [
780
+ check_img_size(x, gs) for x in imgsz
781
+ ] # verify img_size are gs-multiples
782
+ im = torch.zeros(batch_size, 3, *imgsz).to(
783
+ device
784
+ ) # image size(1,3,320,192) BCHW iDetection
785
+
786
+ # Update model
787
+ model.eval()
788
+ for k, m in model.named_modules():
789
+ if isinstance(m, Detect):
790
+ m.inplace = inplace
791
+ m.dynamic = dynamic
792
+ m.export = True
793
+
794
+ for _ in range(2):
795
+ y = model(im) # dry runs
796
+ if half and not coreml:
797
+ im, model = im.half(), model.half() # to FP16
798
+ shape = tuple(
799
+ (y[0] if isinstance(y, tuple) else y).shape
800
+ ) # model output shape
801
+ metadata = {
802
+ "stride": int(max(model.stride)),
803
+ "names": model.names,
804
+ } # model metadata
805
+ LOGGER.info(
806
+ f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)"
807
+ )
808
+
809
+ # Exports
810
+ f = [""] * len(fmts) # exported filenames
811
+ warnings.filterwarnings(
812
+ action="ignore", category=torch.jit.TracerWarning
813
+ ) # suppress TracerWarning
814
+ if jit: # TorchScript
815
+ f[0], _ = export_torchscript(model, im, file, optimize)
816
+ if engine: # TensorRT required before ONNX
817
+ f[1], _ = export_engine(
818
+ model, im, file, half, dynamic, simplify, workspace, verbose
819
+ )
820
+ if onnx or xml: # OpenVINO requires ONNX
821
+ f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
822
+ if xml: # OpenVINO
823
+ f[3], _ = export_openvino(file, metadata, half)
824
+ if coreml: # CoreML
825
+ f[4], _ = export_coreml(model, im, file, int8, half)
826
+ if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
827
+ assert (
828
+ not tflite or not tfjs
829
+ ), "TFLite and TF.js models must be exported separately, please pass only one type."
830
+ assert not isinstance(
831
+ model, ClassificationModel
832
+ ), "ClassificationModel export to TF formats not yet supported."
833
+ f[5], s_model = export_saved_model(
834
+ model.cpu(),
835
+ im,
836
+ file,
837
+ dynamic,
838
+ tf_nms=nms or agnostic_nms or tfjs,
839
+ agnostic_nms=agnostic_nms or tfjs,
840
+ topk_per_class=topk_per_class,
841
+ topk_all=topk_all,
842
+ iou_thres=iou_thres,
843
+ conf_thres=conf_thres,
844
+ keras=keras,
845
+ )
846
+ if pb or tfjs: # pb prerequisite to tfjs
847
+ f[6], _ = export_pb(s_model, file)
848
+ if tflite or edgetpu:
849
+ f[7], _ = export_tflite(
850
+ s_model,
851
+ im,
852
+ file,
853
+ int8 or edgetpu,
854
+ data=data,
855
+ nms=nms,
856
+ agnostic_nms=agnostic_nms,
857
+ )
858
+ if edgetpu:
859
+ f[8], _ = export_edgetpu(file)
860
+ add_tflite_metadata(
861
+ f[8] or f[7], metadata, num_outputs=len(s_model.outputs)
862
+ )
863
+ if tfjs:
864
+ f[9], _ = export_tfjs(file)
865
+ if paddle: # PaddlePaddle
866
+ f[10], _ = export_paddle(model, im, file, metadata)
867
+
868
+ # Finish
869
+ f = [str(x) for x in f if x] # filter out '' and None
870
+ if any(f):
871
+ cls, det, seg = (
872
+ isinstance(model, x)
873
+ for x in (ClassificationModel, DetectionModel, SegmentationModel)
874
+ ) # type
875
+ det &= (
876
+ not seg
877
+ ) # segmentation models inherit from SegmentationModel(DetectionModel)
878
+ dir = Path("segment" if seg else "classify" if cls else "")
879
+ h = "--half" if half else "" # --half FP16 inference arg
880
+ s = (
881
+ "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
882
+ if cls
883
+ else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
884
+ if seg
885
+ else ""
886
+ )
887
+ LOGGER.info(
888
+ f"\nExport complete ({time.time() - t:.1f}s)"
889
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
890
+ f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
891
+ f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
892
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
893
+ f"\nVisualize: https://netron.app"
894
+ )
895
+ return f # return list of exported files/dirs
896
+
897
+
898
+ def parse_opt():
899
+ parser = argparse.ArgumentParser()
900
+ parser.add_argument(
901
+ "--data",
902
+ type=str,
903
+ default=ROOT / "data/coco128.yaml",
904
+ help="dataset.yaml path",
905
+ )
906
+ parser.add_argument(
907
+ "--weights",
908
+ nargs="+",
909
+ type=str,
910
+ default=ROOT / "yolov5s.pt",
911
+ help="model.pt path(s)",
912
+ )
913
+ parser.add_argument(
914
+ "--imgsz",
915
+ "--img",
916
+ "--img-size",
917
+ nargs="+",
918
+ type=int,
919
+ default=[640, 640],
920
+ help="image (h, w)",
921
+ )
922
+ parser.add_argument("--batch-size", type=int, default=1, help="batch size")
923
+ parser.add_argument(
924
+ "--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
925
+ )
926
+ parser.add_argument(
927
+ "--half", action="store_true", help="FP16 half-precision export"
928
+ )
929
+ parser.add_argument(
930
+ "--inplace",
931
+ action="store_true",
932
+ help="set YOLOv5 Detect() inplace=True",
933
+ )
934
+ parser.add_argument("--keras", action="store_true", help="TF: use Keras")
935
+ parser.add_argument(
936
+ "--optimize",
937
+ action="store_true",
938
+ help="TorchScript: optimize for mobile",
939
+ )
940
+ parser.add_argument(
941
+ "--int8", action="store_true", help="CoreML/TF INT8 quantization"
942
+ )
943
+ parser.add_argument(
944
+ "--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes"
945
+ )
946
+ parser.add_argument(
947
+ "--simplify", action="store_true", help="ONNX: simplify model"
948
+ )
949
+ parser.add_argument(
950
+ "--opset", type=int, default=17, help="ONNX: opset version"
951
+ )
952
+ parser.add_argument(
953
+ "--verbose", action="store_true", help="TensorRT: verbose log"
954
+ )
955
+ parser.add_argument(
956
+ "--workspace",
957
+ type=int,
958
+ default=4,
959
+ help="TensorRT: workspace size (GB)",
960
+ )
961
+ parser.add_argument(
962
+ "--nms", action="store_true", help="TF: add NMS to model"
963
+ )
964
+ parser.add_argument(
965
+ "--agnostic-nms",
966
+ action="store_true",
967
+ help="TF: add agnostic NMS to model",
968
+ )
969
+ parser.add_argument(
970
+ "--topk-per-class",
971
+ type=int,
972
+ default=100,
973
+ help="TF.js NMS: topk per class to keep",
974
+ )
975
+ parser.add_argument(
976
+ "--topk-all",
977
+ type=int,
978
+ default=100,
979
+ help="TF.js NMS: topk for all classes to keep",
980
+ )
981
+ parser.add_argument(
982
+ "--iou-thres",
983
+ type=float,
984
+ default=0.45,
985
+ help="TF.js NMS: IoU threshold",
986
+ )
987
+ parser.add_argument(
988
+ "--conf-thres",
989
+ type=float,
990
+ default=0.25,
991
+ help="TF.js NMS: confidence threshold",
992
+ )
993
+ parser.add_argument(
994
+ "--include",
995
+ nargs="+",
996
+ default=["torchscript"],
997
+ help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
998
+ )
999
+ opt = parser.parse_args()
1000
+ print_args(vars(opt))
1001
+ return opt
1002
+
1003
+
1004
+ def main(opt):
1005
+ for opt.weights in (
1006
+ opt.weights if isinstance(opt.weights, list) else [opt.weights]
1007
+ ):
1008
+ run(**vars(opt))
1009
+
1010
+
1011
+ if __name__ == "__main__":
1012
+ opt = parse_opt()
1013
+ main(opt)
hubconf.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
4
+
5
+ Usage:
6
+ import torch
7
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
8
+ model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
9
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
10
+ model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
11
+ """
12
+
13
+ import torch
14
+
15
+
16
+ def _create(
17
+ name,
18
+ pretrained=True,
19
+ channels=3,
20
+ classes=80,
21
+ autoshape=True,
22
+ verbose=True,
23
+ device=None,
24
+ ):
25
+ """Creates or loads a YOLOv5 model
26
+
27
+ Arguments:
28
+ name (str): model name 'yolov5s' or path 'path/to/best.pt'
29
+ pretrained (bool): load pretrained weights into the model
30
+ channels (int): number of input channels
31
+ classes (int): number of model classes
32
+ autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
33
+ verbose (bool): print all information to screen
34
+ device (str, torch.device, None): device to use for model parameters
35
+
36
+ Returns:
37
+ YOLOv5 model
38
+ """
39
+ from pathlib import Path
40
+
41
+ from models.common import AutoShape, DetectMultiBackend
42
+ from models.experimental import attempt_load
43
+ from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
44
+ from utils.downloads import attempt_download
45
+ from utils.general import LOGGER, check_requirements, intersect_dicts, logging
46
+ from utils.torch_utils import select_device
47
+
48
+ if not verbose:
49
+ LOGGER.setLevel(logging.WARNING)
50
+ check_requirements(exclude=("opencv-python", "tensorboard", "thop"))
51
+ name = Path(name)
52
+ path = (
53
+ name.with_suffix(".pt")
54
+ if name.suffix == "" and not name.is_dir()
55
+ else name
56
+ ) # checkpoint path
57
+ try:
58
+ device = select_device(device)
59
+ if pretrained and channels == 3 and classes == 80:
60
+ try:
61
+ model = DetectMultiBackend(
62
+ path, device=device, fuse=autoshape
63
+ ) # detection model
64
+ if autoshape:
65
+ if model.pt and isinstance(
66
+ model.model, ClassificationModel
67
+ ):
68
+ LOGGER.warning(
69
+ "WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
70
+ "You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
71
+ )
72
+ elif model.pt and isinstance(
73
+ model.model, SegmentationModel
74
+ ):
75
+ LOGGER.warning(
76
+ "WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
77
+ "You will not be able to run inference with this model."
78
+ )
79
+ else:
80
+ model = AutoShape(
81
+ model
82
+ ) # for file/URI/PIL/cv2/np inputs and NMS
83
+ except Exception:
84
+ model = attempt_load(
85
+ path, device=device, fuse=False
86
+ ) # arbitrary model
87
+ else:
88
+ cfg = list(
89
+ (Path(__file__).parent / "models").rglob(f"{path.stem}.yaml")
90
+ )[
91
+ 0
92
+ ] # model.yaml path
93
+ model = DetectionModel(cfg, channels, classes) # create model
94
+ if pretrained:
95
+ ckpt = torch.load(
96
+ attempt_download(path), map_location=device
97
+ ) # load
98
+ csd = (
99
+ ckpt["model"].float().state_dict()
100
+ ) # checkpoint state_dict as FP32
101
+ csd = intersect_dicts(
102
+ csd, model.state_dict(), exclude=["anchors"]
103
+ ) # intersect
104
+ model.load_state_dict(csd, strict=False) # load
105
+ if len(ckpt["model"].names) == classes:
106
+ model.names = ckpt[
107
+ "model"
108
+ ].names # set class names attribute
109
+ if not verbose:
110
+ LOGGER.setLevel(logging.INFO) # reset to default
111
+ return model.to(device)
112
+
113
+ except Exception as e:
114
+ help_url = "https://github.com/ultralytics/yolov5/issues/36"
115
+ s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
116
+ raise Exception(s) from e
117
+
118
+
119
+ def custom(
120
+ path="path/to/model.pt", autoshape=True, _verbose=True, device=None
121
+ ):
122
+ # YOLOv5 custom or local model
123
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
124
+
125
+
126
+ def yolov5n(
127
+ pretrained=True,
128
+ channels=3,
129
+ classes=80,
130
+ autoshape=True,
131
+ _verbose=True,
132
+ device=None,
133
+ ):
134
+ # YOLOv5-nano model https://github.com/ultralytics/yolov5
135
+ return _create(
136
+ "yolov5n", pretrained, channels, classes, autoshape, _verbose, device
137
+ )
138
+
139
+
140
+ def yolov5s(
141
+ pretrained=True,
142
+ channels=3,
143
+ classes=80,
144
+ autoshape=True,
145
+ _verbose=True,
146
+ device=None,
147
+ ):
148
+ # YOLOv5-small model https://github.com/ultralytics/yolov5
149
+ return _create(
150
+ "yolov5s", pretrained, channels, classes, autoshape, _verbose, device
151
+ )
152
+
153
+
154
+ def yolov5m(
155
+ pretrained=True,
156
+ channels=3,
157
+ classes=80,
158
+ autoshape=True,
159
+ _verbose=True,
160
+ device=None,
161
+ ):
162
+ # YOLOv5-medium model https://github.com/ultralytics/yolov5
163
+ return _create(
164
+ "yolov5m", pretrained, channels, classes, autoshape, _verbose, device
165
+ )
166
+
167
+
168
+ def yolov5l(
169
+ pretrained=True,
170
+ channels=3,
171
+ classes=80,
172
+ autoshape=True,
173
+ _verbose=True,
174
+ device=None,
175
+ ):
176
+ # YOLOv5-large model https://github.com/ultralytics/yolov5
177
+ return _create(
178
+ "yolov5l", pretrained, channels, classes, autoshape, _verbose, device
179
+ )
180
+
181
+
182
+ def yolov5x(
183
+ pretrained=True,
184
+ channels=3,
185
+ classes=80,
186
+ autoshape=True,
187
+ _verbose=True,
188
+ device=None,
189
+ ):
190
+ # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
191
+ return _create(
192
+ "yolov5x", pretrained, channels, classes, autoshape, _verbose, device
193
+ )
194
+
195
+
196
+ def yolov5n6(
197
+ pretrained=True,
198
+ channels=3,
199
+ classes=80,
200
+ autoshape=True,
201
+ _verbose=True,
202
+ device=None,
203
+ ):
204
+ # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
205
+ return _create(
206
+ "yolov5n6", pretrained, channels, classes, autoshape, _verbose, device
207
+ )
208
+
209
+
210
+ def yolov5s6(
211
+ pretrained=True,
212
+ channels=3,
213
+ classes=80,
214
+ autoshape=True,
215
+ _verbose=True,
216
+ device=None,
217
+ ):
218
+ # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
219
+ return _create(
220
+ "yolov5s6", pretrained, channels, classes, autoshape, _verbose, device
221
+ )
222
+
223
+
224
+ def yolov5m6(
225
+ pretrained=True,
226
+ channels=3,
227
+ classes=80,
228
+ autoshape=True,
229
+ _verbose=True,
230
+ device=None,
231
+ ):
232
+ # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
233
+ return _create(
234
+ "yolov5m6", pretrained, channels, classes, autoshape, _verbose, device
235
+ )
236
+
237
+
238
+ def yolov5l6(
239
+ pretrained=True,
240
+ channels=3,
241
+ classes=80,
242
+ autoshape=True,
243
+ _verbose=True,
244
+ device=None,
245
+ ):
246
+ # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
247
+ return _create(
248
+ "yolov5l6", pretrained, channels, classes, autoshape, _verbose, device
249
+ )
250
+
251
+
252
+ def yolov5x6(
253
+ pretrained=True,
254
+ channels=3,
255
+ classes=80,
256
+ autoshape=True,
257
+ _verbose=True,
258
+ device=None,
259
+ ):
260
+ # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
261
+ return _create(
262
+ "yolov5x6", pretrained, channels, classes, autoshape, _verbose, device
263
+ )
264
+
265
+
266
+ if __name__ == "__main__":
267
+ import argparse
268
+ from pathlib import Path
269
+
270
+ import numpy as np
271
+ from PIL import Image
272
+
273
+ from utils.general import cv2, print_args
274
+
275
+ # Argparser
276
+ parser = argparse.ArgumentParser()
277
+ parser.add_argument(
278
+ "--model", type=str, default="yolov5s", help="model name"
279
+ )
280
+ opt = parser.parse_args()
281
+ print_args(vars(opt))
282
+
283
+ # Model
284
+ model = _create(
285
+ name=opt.model,
286
+ pretrained=True,
287
+ channels=3,
288
+ classes=80,
289
+ autoshape=True,
290
+ verbose=True,
291
+ )
292
+ # model = custom(path='path/to/model.pt') # custom
293
+
294
+ # Images
295
+ imgs = [
296
+ "data/images/zidane.jpg", # filename
297
+ Path("data/images/zidane.jpg"), # Path
298
+ "https://ultralytics.com/images/zidane.jpg", # URI
299
+ cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
300
+ Image.open("data/images/bus.jpg"), # PIL
301
+ np.zeros((320, 640, 3)),
302
+ ] # numpy
303
+
304
+ # Inference
305
+ results = model(imgs, size=320) # batched inference
306
+
307
+ # Results
308
+ results.print()
309
+ results.save()
packages.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ffmpeg
2
+ libxext6
3
+ libsm6
4
+ libxrender1
5
+ libfontconfig1
6
+ libice6
planogram.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
2
+ path: ../planogram_data # dataset root dir
3
+ train: images/train # train images (relative to 'path') 128 images
4
+ val: images/val # val images (relative to 'path') 128 images
5
+ test: images/test # test images (optional)
6
+
7
+ # Classes
8
+ nc: 46 # number of classes
9
+ names: ['Bottle,100PLUS ACTIVE 1.5L','Bottle,100PLUS ACTIVE 500ML','Bottle,100PLUS LEMON LIME 1.5L',
10
+ 'Bottle,100PLUS ORANGE 500ML', 'Bottle,100PLUS ORIGINAL 1.5L',
11
+ 'Bottle,100PLUS TANGY ORANGE 1.5L','Bottle,100PLUS ZERO 1.5L', 'Bottle,100PLUS ZERO 500ML','Packet,F:M MAGNOLIA CHOC 1L',
12
+ 'Bottle,F&N GINGER ADE 1.5L','Bottle,F&N GRAPE 1.5L','Bottle,F&N ICE CREAM SODA 1.5L','Bottle,F&N LYCHEE PEAR 1.5L','Bottle,F&N ORANGE 1.5L',
13
+ 'Bottle,F&N PINEAPPLE PET 1.5L','Bottle,F&N SARSI 1.5L','Bottle,F&N SS ICE LEM TEA RS 500ML','Bottle,F&N SS ICE LEMON TEA RS 1.5L','Bottle,F&N SS ICE LEMON TEA 1.5L','Bottle,F&N SS ICE LEMON TEA 500ML',
14
+ 'Bottle,F&N SS ICE PEACH TEA 1.5L','Bottle,SS ICE LEMON GT 1.48L','Bottle,SS WHITE CHRYS TEA 1.48L','Packet,FARMHOUSE FRESH MILK 1L FNDM','Packet,FARMHOUSE PLAIN LF 1L',
15
+ 'Packet,PURA FRESH MILK 1L FS','Packet,NUTRISOY REG NO SUGAR ADDED 1L','Packet,NUTRISOY PLAIN 475ML','Packet,NUTRISOY PLAIN 1L','Packet,NUTRISOY OMEGA RD SUGAR 1L','Packet,NUTRISOY OMEGA NSA 1L',
16
+ 'Packet,NUTRISOY ALMOND 1L','Packet,MAGNOLIA FRESH MILK 1L FNDM','Packet,FM MAG FC PLAIN 200ML', 'Packet,MAG OMEGA PLUS PLAIN 200ML','Packet,MAG KURMA MILK 500ML','Packet,MAG KURMA MILK 1L',
17
+ 'Packet,MAG CHOCOLATE FC 500ML','Packet,MAG BROWN SUGAR SS MILK 1L','Packet,FM MAG LFHC PLN 500ML','Packet,FM MAG LFHC OAT 500ML','Packet,FM MAG LFHC OAT 1L','Packet,FM MAG FC PLAIN 500ML',
18
+ 'Void,PARTIAL VOID', 'Void,FULL VOID','Bottle,F&N SS ICE LEM TEA 500ML'] # class names
requirements.txt CHANGED
@@ -38,55 +38,3 @@ pandas>=1.1.4
38
  # pycocotools>=2.0 # COCO mAP
39
  # roboflow
40
  #thop # FLOPs computation
41
-
42
-
43
- # YOLOv5 requirements
44
- # Usage: pip install -r requirements.txt
45
-
46
- # Base ------------------------------------------------------------------------
47
- gitpython>=3.1.30
48
- matplotlib>=3.3
49
- numpy>=1.23.5
50
- opencv-python>=4.1.1
51
- pillow>=10.3.0
52
- psutil # system resources
53
- PyYAML>=5.3.1
54
- requests>=2.23.0
55
- scipy>=1.4.1
56
- thop>=0.1.1 # FLOPs computation
57
- torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
58
- torchvision>=0.9.0
59
- tqdm>=4.64.0
60
- ultralytics>=8.0.232
61
- # protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
62
-
63
- # Logging ---------------------------------------------------------------------
64
- # tensorboard>=2.4.1
65
- # clearml>=1.2.0
66
- # comet
67
-
68
- # Plotting --------------------------------------------------------------------
69
- pandas>=1.1.4
70
- seaborn>=0.11.0
71
-
72
- # Export ----------------------------------------------------------------------
73
- # coremltools>=6.0 # CoreML export
74
- # onnx>=1.10.0 # ONNX export
75
- # onnx-simplifier>=0.4.1 # ONNX simplifier
76
- # nvidia-pyindex # TensorRT export
77
- # nvidia-tensorrt # TensorRT export
78
- # scikit-learn<=1.1.2 # CoreML quantization
79
- # tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
80
- # tensorflowjs>=3.9.0 # TF.js export
81
- # openvino-dev>=2023.0 # OpenVINO export
82
-
83
- # Deploy ----------------------------------------------------------------------
84
- setuptools>=65.5.1 # Snyk vulnerability fix
85
- # tritonclient[all]~=2.24.0
86
-
87
- # Extras ----------------------------------------------------------------------
88
- # ipython # interactive notebook
89
- # mss # screenshots
90
- # albumentations>=1.0.3
91
- # pycocotools>=2.0.6 # COCO mAP
92
- wheel>=0.38.0 # not directly required, pinned by Snyk to avoid a vulnerability
 
38
  # pycocotools>=2.0 # COCO mAP
39
  # roboflow
40
  #thop # FLOPs computation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
runtime.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python-3.9.0
sample_master_planogram.jpeg ADDED

Git LFS Details

  • SHA256: f4ad67f722e64aa5c1777e3011a1eb6d30e687ba1cf0c061defa693e90ad764b
  • Pointer size: 132 Bytes
  • Size of remote file: 3.5 MB
sample_planogram.jpg ADDED
setup.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mkdir -p ~/.streamlit/
2
+ echo "\
3
+ [server]\n\
4
+ headless = true\n\
5
+ port = $PORT\n\
6
+ enableCORS = false\n\
7
+ \n\
8
+ " > ~/.streamlit/config.toml
test_local_infernce.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
tmp.png ADDED

Git LFS Details

  • SHA256: 4eba500ab69ae7b537a6cf8a8bd854a7e30dbb27a40d9ab75c0e9047e45ae5df
  • Pointer size: 132 Bytes
  • Size of remote file: 2.18 MB
tmp_xml_annotation.xml ADDED
File without changes
train.py ADDED
@@ -0,0 +1,1046 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Train a YOLOv5 model on a custom dataset
4
+
5
+ Usage:
6
+ $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
7
+ """
8
+
9
+ import argparse
10
+ import logging
11
+ import math
12
+ import os
13
+ import random
14
+ import sys
15
+ import time
16
+ from copy import deepcopy
17
+ from pathlib import Path
18
+
19
+ import numpy as np
20
+ import torch
21
+ import torch.distributed as dist
22
+ import torch.nn as nn
23
+ import yaml
24
+ from torch.cuda import amp
25
+ from torch.nn.parallel import DistributedDataParallel as DDP
26
+ from torch.optim import SGD, Adam, lr_scheduler
27
+ from tqdm import tqdm
28
+
29
+ FILE = Path(__file__).absolute()
30
+ sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
31
+
32
+ import val # for end-of-epoch mAP
33
+ from models.experimental import attempt_load
34
+ from models.yolo import Model
35
+ from utils.autoanchor import check_anchors
36
+ from utils.callbacks import Callbacks
37
+ from utils.datasets import create_dataloader
38
+ from utils.downloads import attempt_download
39
+ from utils.general import (
40
+ check_dataset,
41
+ check_file,
42
+ check_git_status,
43
+ check_img_size,
44
+ check_requirements,
45
+ check_suffix,
46
+ check_yaml,
47
+ colorstr,
48
+ get_latest_run,
49
+ increment_path,
50
+ init_seeds,
51
+ labels_to_class_weights,
52
+ labels_to_image_weights,
53
+ methods,
54
+ one_cycle,
55
+ print_mutation,
56
+ set_logging,
57
+ strip_optimizer,
58
+ )
59
+ from utils.loggers import Loggers
60
+ from utils.loggers.wandb.wandb_utils import check_wandb_resume
61
+ from utils.loss import ComputeLoss
62
+ from utils.metrics import fitness
63
+ from utils.plots import plot_evolve, plot_labels
64
+ from utils.torch_utils import (
65
+ EarlyStopping,
66
+ ModelEMA,
67
+ de_parallel,
68
+ intersect_dicts,
69
+ select_device,
70
+ torch_distributed_zero_first,
71
+ )
72
+
73
+ LOGGER = logging.getLogger(__name__)
74
+ LOCAL_RANK = int(
75
+ os.getenv("LOCAL_RANK", -1)
76
+ ) # https://pytorch.org/docs/stable/elastic/run.html
77
+ RANK = int(os.getenv("RANK", -1))
78
+ WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
79
+
80
+
81
+ def train(hyp, opt, device, callbacks): # path/to/hyp.yaml or hyp dictionary
82
+ (
83
+ save_dir,
84
+ epochs,
85
+ batch_size,
86
+ weights,
87
+ single_cls,
88
+ evolve,
89
+ data,
90
+ cfg,
91
+ resume,
92
+ noval,
93
+ nosave,
94
+ workers,
95
+ freeze,
96
+ ) = (
97
+ Path(opt.save_dir),
98
+ opt.epochs,
99
+ opt.batch_size,
100
+ opt.weights,
101
+ opt.single_cls,
102
+ opt.evolve,
103
+ opt.data,
104
+ opt.cfg,
105
+ opt.resume,
106
+ opt.noval,
107
+ opt.nosave,
108
+ opt.workers,
109
+ opt.freeze,
110
+ )
111
+
112
+ # Directories
113
+ w = save_dir / "weights" # weights dir
114
+ w.mkdir(parents=True, exist_ok=True) # make dir
115
+ last, best = w / "last.pt", w / "best.pt"
116
+
117
+ # Hyperparameters
118
+ if isinstance(hyp, str):
119
+ with open(hyp) as f:
120
+ hyp = yaml.safe_load(f) # load hyps dict
121
+ LOGGER.info(
122
+ colorstr("hyperparameters: ")
123
+ + ", ".join(f"{k}={v}" for k, v in hyp.items())
124
+ )
125
+
126
+ # Save run settings
127
+ with open(save_dir / "hyp.yaml", "w") as f:
128
+ yaml.safe_dump(hyp, f, sort_keys=False)
129
+ with open(save_dir / "opt.yaml", "w") as f:
130
+ yaml.safe_dump(vars(opt), f, sort_keys=False)
131
+ data_dict = None
132
+
133
+ # Loggers
134
+ if RANK in [-1, 0]:
135
+ loggers = Loggers(
136
+ save_dir, weights, opt, hyp, LOGGER
137
+ ) # loggers instance
138
+ if loggers.wandb:
139
+ data_dict = loggers.wandb.data_dict
140
+ if resume:
141
+ weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
142
+
143
+ # Register actions
144
+ for k in methods(loggers):
145
+ callbacks.register_action(k, callback=getattr(loggers, k))
146
+
147
+ # Config
148
+ plots = not evolve # create plots
149
+ cuda = device.type != "cpu"
150
+ init_seeds(1 + RANK)
151
+ with torch_distributed_zero_first(RANK):
152
+ data_dict = data_dict or check_dataset(data) # check if None
153
+ train_path, val_path = data_dict["train"], data_dict["val"]
154
+ nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
155
+ names = (
156
+ ["item"]
157
+ if single_cls and len(data_dict["names"]) != 1
158
+ else data_dict["names"]
159
+ ) # class names
160
+ assert (
161
+ len(names) == nc
162
+ ), f"{len(names)} names found for nc={nc} dataset in {data}" # check
163
+ is_coco = data.endswith("coco.yaml") and nc == 80 # COCO dataset
164
+
165
+ # Model
166
+ check_suffix(weights, ".pt") # check weights
167
+ pretrained = weights.endswith(".pt")
168
+ if pretrained:
169
+ with torch_distributed_zero_first(RANK):
170
+ weights = attempt_download(
171
+ weights
172
+ ) # download if not found locally
173
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
174
+ model = Model(
175
+ cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")
176
+ ).to(
177
+ device
178
+ ) # create
179
+ exclude = (
180
+ ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []
181
+ ) # exclude keys
182
+ csd = (
183
+ ckpt["model"].float().state_dict()
184
+ ) # checkpoint state_dict as FP32
185
+ csd = intersect_dicts(
186
+ csd, model.state_dict(), exclude=exclude
187
+ ) # intersect
188
+ model.load_state_dict(csd, strict=False) # load
189
+ LOGGER.info(
190
+ f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}"
191
+ ) # report
192
+ else:
193
+ model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(
194
+ device
195
+ ) # create
196
+
197
+ # Freeze
198
+ freeze = [f"model.{x}." for x in range(freeze)] # layers to freeze
199
+ for k, v in model.named_parameters():
200
+ v.requires_grad = True # train all layers
201
+ if any(x in k for x in freeze):
202
+ print(f"freezing {k}")
203
+ v.requires_grad = False
204
+
205
+ # Optimizer
206
+ nbs = 64 # nominal batch size
207
+ accumulate = max(
208
+ round(nbs / batch_size), 1
209
+ ) # accumulate loss before optimizing
210
+ hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
211
+ LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
212
+
213
+ g0, g1, g2 = [], [], [] # optimizer parameter groups
214
+ for v in model.modules():
215
+ if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter): # bias
216
+ g2.append(v.bias)
217
+ if isinstance(v, nn.BatchNorm2d): # weight (no decay)
218
+ g0.append(v.weight)
219
+ elif hasattr(v, "weight") and isinstance(
220
+ v.weight, nn.Parameter
221
+ ): # weight (with decay)
222
+ g1.append(v.weight)
223
+
224
+ if opt.adam:
225
+ optimizer = Adam(
226
+ g0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
227
+ ) # adjust beta1 to momentum
228
+ else:
229
+ optimizer = SGD(
230
+ g0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
231
+ )
232
+
233
+ optimizer.add_param_group(
234
+ {"params": g1, "weight_decay": hyp["weight_decay"]}
235
+ ) # add g1 with weight_decay
236
+ optimizer.add_param_group({"params": g2}) # add g2 (biases)
237
+ LOGGER.info(
238
+ f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
239
+ f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias"
240
+ )
241
+ del g0, g1, g2
242
+
243
+ # Scheduler
244
+ if opt.linear_lr:
245
+ lf = (
246
+ lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp["lrf"]) + hyp["lrf"]
247
+ ) # linear
248
+ else:
249
+ lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
250
+ scheduler = lr_scheduler.LambdaLR(
251
+ optimizer, lr_lambda=lf
252
+ ) # plot_lr_scheduler(optimizer, scheduler, epochs)
253
+
254
+ # EMA
255
+ ema = ModelEMA(model) if RANK in [-1, 0] else None
256
+
257
+ # Resume
258
+ start_epoch, best_fitness = 0, 0.0
259
+ if pretrained:
260
+ # Optimizer
261
+ if ckpt["optimizer"] is not None:
262
+ optimizer.load_state_dict(ckpt["optimizer"])
263
+ best_fitness = ckpt["best_fitness"]
264
+
265
+ # EMA
266
+ if ema and ckpt.get("ema"):
267
+ ema.ema.load_state_dict(ckpt["ema"].float().state_dict())
268
+ ema.updates = ckpt["updates"]
269
+
270
+ # Epochs
271
+ start_epoch = ckpt["epoch"] + 1
272
+ if resume:
273
+ assert (
274
+ start_epoch > 0
275
+ ), f"{weights} training to {epochs} epochs is finished, nothing to resume."
276
+ if epochs < start_epoch:
277
+ LOGGER.info(
278
+ f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
279
+ )
280
+ epochs += ckpt["epoch"] # finetune additional epochs
281
+
282
+ del ckpt, csd
283
+
284
+ # Image sizes
285
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
286
+ nl = model.model[
287
+ -1
288
+ ].nl # number of detection layers (used for scaling hyp['obj'])
289
+ imgsz = check_img_size(
290
+ opt.imgsz, gs, floor=gs * 2
291
+ ) # verify imgsz is gs-multiple
292
+
293
+ # DP mode
294
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
295
+ logging.warning(
296
+ "DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n"
297
+ "See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started."
298
+ )
299
+ model = torch.nn.DataParallel(model)
300
+
301
+ # SyncBatchNorm
302
+ if opt.sync_bn and cuda and RANK != -1:
303
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
304
+ LOGGER.info("Using SyncBatchNorm()")
305
+
306
+ # Trainloader
307
+ train_loader, dataset = create_dataloader(
308
+ train_path,
309
+ imgsz,
310
+ batch_size // WORLD_SIZE,
311
+ gs,
312
+ single_cls,
313
+ hyp=hyp,
314
+ augment=True,
315
+ cache=opt.cache,
316
+ rect=opt.rect,
317
+ rank=RANK,
318
+ workers=workers,
319
+ image_weights=opt.image_weights,
320
+ quad=opt.quad,
321
+ prefix=colorstr("train: "),
322
+ )
323
+ mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
324
+ nb = len(train_loader) # number of batches
325
+ assert (
326
+ mlc < nc
327
+ ), f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
328
+
329
+ # Process 0
330
+ if RANK in [-1, 0]:
331
+ val_loader = create_dataloader(
332
+ val_path,
333
+ imgsz,
334
+ batch_size // WORLD_SIZE * 2,
335
+ gs,
336
+ single_cls,
337
+ hyp=hyp,
338
+ cache=None if noval else opt.cache,
339
+ rect=True,
340
+ rank=-1,
341
+ workers=workers,
342
+ pad=0.5,
343
+ prefix=colorstr("val: "),
344
+ )[0]
345
+
346
+ if not resume:
347
+ labels = np.concatenate(dataset.labels, 0)
348
+ # c = torch.tensor(labels[:, 0]) # classes
349
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
350
+ # model._initialize_biases(cf.to(device))
351
+ if plots:
352
+ plot_labels(labels, names, save_dir)
353
+
354
+ # Anchors
355
+ if not opt.noautoanchor:
356
+ check_anchors(
357
+ dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz
358
+ )
359
+ model.half().float() # pre-reduce anchor precision
360
+
361
+ callbacks.run("on_pretrain_routine_end")
362
+
363
+ # DDP mode
364
+ if cuda and RANK != -1:
365
+ model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
366
+
367
+ # Model parameters
368
+ hyp["box"] *= 3.0 / nl # scale to layers
369
+ hyp["cls"] *= nc / 80.0 * 3.0 / nl # scale to classes and layers
370
+ hyp["obj"] *= (
371
+ (imgsz / 640) ** 2 * 3.0 / nl
372
+ ) # scale to image size and layers
373
+ hyp["label_smoothing"] = opt.label_smoothing
374
+ model.nc = nc # attach number of classes to model
375
+ model.hyp = hyp # attach hyperparameters to model
376
+ model.class_weights = (
377
+ labels_to_class_weights(dataset.labels, nc).to(device) * nc
378
+ ) # attach class weights
379
+ model.names = names
380
+
381
+ # Start training
382
+ t0 = time.time()
383
+ nw = max(
384
+ round(hyp["warmup_epochs"] * nb), 1000
385
+ ) # number of warmup iterations, max(3 epochs, 1k iterations)
386
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
387
+ last_opt_step = -1
388
+ maps = np.zeros(nc) # mAP per class
389
+ results = (
390
+ 0,
391
+ 0,
392
+ 0,
393
+ 0,
394
+ 0,
395
+ 0,
396
+ 0,
397
+ ) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
398
+ scheduler.last_epoch = start_epoch - 1 # do not move
399
+ scaler = amp.GradScaler(enabled=cuda)
400
+ stopper = EarlyStopping(patience=opt.patience)
401
+ compute_loss = ComputeLoss(model) # init loss class
402
+ LOGGER.info(
403
+ f"Image sizes {imgsz} train, {imgsz} val\n"
404
+ f"Using {train_loader.num_workers} dataloader workers\n"
405
+ f"Logging results to {colorstr('bold', save_dir)}\n"
406
+ f"Starting training for {epochs} epochs..."
407
+ )
408
+ for epoch in range(
409
+ start_epoch, epochs
410
+ ): # epoch ------------------------------------------------------------------
411
+ model.train()
412
+
413
+ # Update image weights (optional, single-GPU only)
414
+ if opt.image_weights:
415
+ cw = (
416
+ model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
417
+ ) # class weights
418
+ iw = labels_to_image_weights(
419
+ dataset.labels, nc=nc, class_weights=cw
420
+ ) # image weights
421
+ dataset.indices = random.choices(
422
+ range(dataset.n), weights=iw, k=dataset.n
423
+ ) # rand weighted idx
424
+
425
+ # Update mosaic border (optional)
426
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
427
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
428
+
429
+ mloss = torch.zeros(3, device=device) # mean losses
430
+ if RANK != -1:
431
+ train_loader.sampler.set_epoch(epoch)
432
+ pbar = enumerate(train_loader)
433
+ LOGGER.info(
434
+ ("\n" + "%10s" * 7)
435
+ % ("Epoch", "gpu_mem", "box", "obj", "cls", "labels", "img_size")
436
+ )
437
+ if RANK in [-1, 0]:
438
+ pbar = tqdm(pbar, total=nb) # progress bar
439
+ optimizer.zero_grad()
440
+ for i, (
441
+ imgs,
442
+ targets,
443
+ paths,
444
+ _,
445
+ ) in (
446
+ pbar
447
+ ): # batch -------------------------------------------------------------
448
+ ni = (
449
+ i + nb * epoch
450
+ ) # number integrated batches (since train start)
451
+ imgs = (
452
+ imgs.to(device, non_blocking=True).float() / 255.0
453
+ ) # uint8 to float32, 0-255 to 0.0-1.0
454
+
455
+ # Warmup
456
+ if ni <= nw:
457
+ xi = [0, nw] # x interp
458
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
459
+ accumulate = max(
460
+ 1, np.interp(ni, xi, [1, nbs / batch_size]).round()
461
+ )
462
+ for j, x in enumerate(optimizer.param_groups):
463
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
464
+ x["lr"] = np.interp(
465
+ ni,
466
+ xi,
467
+ [
468
+ hyp["warmup_bias_lr"] if j == 2 else 0.0,
469
+ x["initial_lr"] * lf(epoch),
470
+ ],
471
+ )
472
+ if "momentum" in x:
473
+ x["momentum"] = np.interp(
474
+ ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
475
+ )
476
+
477
+ # Multi-scale
478
+ if opt.multi_scale:
479
+ sz = (
480
+ random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs
481
+ ) # size
482
+ sf = sz / max(imgs.shape[2:]) # scale factor
483
+ if sf != 1:
484
+ ns = [
485
+ math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
486
+ ] # new shape (stretched to gs-multiple)
487
+ imgs = nn.functional.interpolate(
488
+ imgs, size=ns, mode="bilinear", align_corners=False
489
+ )
490
+
491
+ # Forward
492
+ with amp.autocast(enabled=cuda):
493
+ pred = model(imgs) # forward
494
+ loss, loss_items = compute_loss(
495
+ pred, targets.to(device)
496
+ ) # loss scaled by batch_size
497
+ if RANK != -1:
498
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
499
+ if opt.quad:
500
+ loss *= 4.0
501
+
502
+ # Backward
503
+ scaler.scale(loss).backward()
504
+
505
+ # Optimize
506
+ if ni - last_opt_step >= accumulate:
507
+ scaler.step(optimizer) # optimizer.step
508
+ scaler.update()
509
+ optimizer.zero_grad()
510
+ if ema:
511
+ ema.update(model)
512
+ last_opt_step = ni
513
+
514
+ # Log
515
+ if RANK in [-1, 0]:
516
+ mloss = (mloss * i + loss_items) / (
517
+ i + 1
518
+ ) # update mean losses
519
+ mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
520
+ pbar.set_description(
521
+ ("%10s" * 2 + "%10.4g" * 5)
522
+ % (
523
+ f"{epoch}/{epochs - 1}",
524
+ mem,
525
+ *mloss,
526
+ targets.shape[0],
527
+ imgs.shape[-1],
528
+ )
529
+ )
530
+ callbacks.run(
531
+ "on_train_batch_end",
532
+ ni,
533
+ model,
534
+ imgs,
535
+ targets,
536
+ paths,
537
+ plots,
538
+ opt.sync_bn,
539
+ )
540
+ # end batch ------------------------------------------------------------------------------------------------
541
+
542
+ # Scheduler
543
+ lr = [x["lr"] for x in optimizer.param_groups] # for loggers
544
+ scheduler.step()
545
+
546
+ if RANK in [-1, 0]:
547
+ # mAP
548
+ callbacks.run("on_train_epoch_end", epoch=epoch)
549
+ ema.update_attr(
550
+ model,
551
+ include=[
552
+ "yaml",
553
+ "nc",
554
+ "hyp",
555
+ "names",
556
+ "stride",
557
+ "class_weights",
558
+ ],
559
+ )
560
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
561
+ if not noval or final_epoch: # Calculate mAP
562
+ results, maps, _ = val.run(
563
+ data_dict,
564
+ batch_size=batch_size // WORLD_SIZE * 2,
565
+ imgsz=imgsz,
566
+ model=ema.ema,
567
+ single_cls=single_cls,
568
+ dataloader=val_loader,
569
+ save_dir=save_dir,
570
+ save_json=is_coco and final_epoch,
571
+ verbose=nc < 50 and final_epoch,
572
+ plots=plots and final_epoch,
573
+ callbacks=callbacks,
574
+ compute_loss=compute_loss,
575
+ )
576
+
577
+ # Update best mAP
578
+ fi = fitness(
579
+ np.array(results).reshape(1, -1)
580
+ ) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
581
+ if fi > best_fitness:
582
+ best_fitness = fi
583
+ log_vals = list(mloss) + list(results) + lr
584
+ callbacks.run(
585
+ "on_fit_epoch_end", log_vals, epoch, best_fitness, fi
586
+ )
587
+
588
+ # Save model
589
+ if (not nosave) or (final_epoch and not evolve): # if save
590
+ ckpt = {
591
+ "epoch": epoch,
592
+ "best_fitness": best_fitness,
593
+ "model": deepcopy(de_parallel(model)).half(),
594
+ "ema": deepcopy(ema.ema).half(),
595
+ "updates": ema.updates,
596
+ "optimizer": optimizer.state_dict(),
597
+ "wandb_id": loggers.wandb.wandb_run.id
598
+ if loggers.wandb
599
+ else None,
600
+ }
601
+
602
+ # Save last, best and delete
603
+ torch.save(ckpt, last)
604
+ if best_fitness == fi:
605
+ torch.save(ckpt, best)
606
+ del ckpt
607
+ callbacks.run(
608
+ "on_model_save", last, epoch, final_epoch, best_fitness, fi
609
+ )
610
+
611
+ # Stop Single-GPU
612
+ if RANK == -1 and stopper(epoch=epoch, fitness=fi):
613
+ break
614
+
615
+ # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
616
+ # stop = stopper(epoch=epoch, fitness=fi)
617
+ # if RANK == 0:
618
+ # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
619
+
620
+ # Stop DPP
621
+ # with torch_distributed_zero_first(RANK):
622
+ # if stop:
623
+ # break # must break all DDP ranks
624
+
625
+ # end epoch ----------------------------------------------------------------------------------------------------
626
+ # end training -----------------------------------------------------------------------------------------------------
627
+ if RANK in [-1, 0]:
628
+ LOGGER.info(
629
+ f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours."
630
+ )
631
+ if not evolve:
632
+ if is_coco: # COCO dataset
633
+ for m in (
634
+ [last, best] if best.exists() else [last]
635
+ ): # speed, mAP tests
636
+ results, _, _ = val.run(
637
+ data_dict,
638
+ batch_size=batch_size // WORLD_SIZE * 2,
639
+ imgsz=imgsz,
640
+ model=attempt_load(m, device).half(),
641
+ iou_thres=0.7, # NMS IoU threshold for best pycocotools results
642
+ single_cls=single_cls,
643
+ dataloader=val_loader,
644
+ save_dir=save_dir,
645
+ save_json=True,
646
+ plots=False,
647
+ )
648
+ # Strip optimizers
649
+ for f in last, best:
650
+ if f.exists():
651
+ strip_optimizer(f) # strip optimizers
652
+ callbacks.run("on_train_end", last, best, plots, epoch)
653
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
654
+
655
+ torch.cuda.empty_cache()
656
+ return results
657
+
658
+
659
+ def parse_opt(known=False):
660
+ parser = argparse.ArgumentParser()
661
+ parser.add_argument(
662
+ "--weights",
663
+ type=str,
664
+ default="yolov5s.pt",
665
+ help="initial weights path",
666
+ )
667
+ parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
668
+ parser.add_argument(
669
+ "--data",
670
+ type=str,
671
+ default="data/coco128.yaml",
672
+ help="dataset.yaml path",
673
+ )
674
+ parser.add_argument(
675
+ "--hyp",
676
+ type=str,
677
+ default="data/hyps/hyp.scratch.yaml",
678
+ help="hyperparameters path",
679
+ )
680
+ parser.add_argument("--epochs", type=int, default=300)
681
+ parser.add_argument(
682
+ "--batch-size",
683
+ type=int,
684
+ default=16,
685
+ help="total batch size for all GPUs",
686
+ )
687
+ parser.add_argument(
688
+ "--imgsz",
689
+ "--img",
690
+ "--img-size",
691
+ type=int,
692
+ default=640,
693
+ help="train, val image size (pixels)",
694
+ )
695
+ parser.add_argument(
696
+ "--rect", action="store_true", help="rectangular training"
697
+ )
698
+ parser.add_argument(
699
+ "--resume",
700
+ nargs="?",
701
+ const=True,
702
+ default=False,
703
+ help="resume most recent training",
704
+ )
705
+ parser.add_argument(
706
+ "--nosave", action="store_true", help="only save final checkpoint"
707
+ )
708
+ parser.add_argument(
709
+ "--noval", action="store_true", help="only validate final epoch"
710
+ )
711
+ parser.add_argument(
712
+ "--noautoanchor", action="store_true", help="disable autoanchor check"
713
+ )
714
+ parser.add_argument(
715
+ "--evolve",
716
+ type=int,
717
+ nargs="?",
718
+ const=300,
719
+ help="evolve hyperparameters for x generations",
720
+ )
721
+ parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
722
+ parser.add_argument(
723
+ "--cache",
724
+ type=str,
725
+ nargs="?",
726
+ const="ram",
727
+ help='--cache images in "ram" (default) or "disk"',
728
+ )
729
+ parser.add_argument(
730
+ "--image-weights",
731
+ action="store_true",
732
+ help="use weighted image selection for training",
733
+ )
734
+ parser.add_argument(
735
+ "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
736
+ )
737
+ parser.add_argument(
738
+ "--multi-scale", action="store_true", help="vary img-size +/- 50%%"
739
+ )
740
+ parser.add_argument(
741
+ "--single-cls",
742
+ action="store_true",
743
+ help="train multi-class data as single-class",
744
+ )
745
+ parser.add_argument(
746
+ "--adam", action="store_true", help="use torch.optim.Adam() optimizer"
747
+ )
748
+ parser.add_argument(
749
+ "--sync-bn",
750
+ action="store_true",
751
+ help="use SyncBatchNorm, only available in DDP mode",
752
+ )
753
+ parser.add_argument(
754
+ "--workers",
755
+ type=int,
756
+ default=8,
757
+ help="maximum number of dataloader workers",
758
+ )
759
+ parser.add_argument(
760
+ "--project", default="runs/train", help="save to project/name"
761
+ )
762
+ parser.add_argument("--entity", default=None, help="W&B entity")
763
+ parser.add_argument("--name", default="exp", help="save to project/name")
764
+ parser.add_argument(
765
+ "--exist-ok",
766
+ action="store_true",
767
+ help="existing project/name ok, do not increment",
768
+ )
769
+ parser.add_argument("--quad", action="store_true", help="quad dataloader")
770
+ parser.add_argument("--linear-lr", action="store_true", help="linear LR")
771
+ parser.add_argument(
772
+ "--label-smoothing",
773
+ type=float,
774
+ default=0.0,
775
+ help="Label smoothing epsilon",
776
+ )
777
+ parser.add_argument(
778
+ "--upload_dataset",
779
+ action="store_true",
780
+ help="Upload dataset as W&B artifact table",
781
+ )
782
+ parser.add_argument(
783
+ "--bbox_interval",
784
+ type=int,
785
+ default=-1,
786
+ help="Set bounding-box image logging interval for W&B",
787
+ )
788
+ parser.add_argument(
789
+ "--save_period",
790
+ type=int,
791
+ default=-1,
792
+ help='Log model after every "save_period" epoch',
793
+ )
794
+ parser.add_argument(
795
+ "--artifact_alias",
796
+ type=str,
797
+ default="latest",
798
+ help="version of dataset artifact to be used",
799
+ )
800
+ parser.add_argument(
801
+ "--local_rank",
802
+ type=int,
803
+ default=-1,
804
+ help="DDP parameter, do not modify",
805
+ )
806
+ parser.add_argument(
807
+ "--freeze",
808
+ type=int,
809
+ default=0,
810
+ help="Number of layers to freeze. backbone=10, all=24",
811
+ )
812
+ parser.add_argument(
813
+ "--patience",
814
+ type=int,
815
+ default=100,
816
+ help="EarlyStopping patience (epochs without improvement)",
817
+ )
818
+ opt = parser.parse_known_args()[0] if known else parser.parse_args()
819
+ return opt
820
+
821
+
822
+ def main(opt, callbacks=Callbacks()):
823
+ # Checks
824
+ set_logging(RANK)
825
+ if RANK in [-1, 0]:
826
+ print(
827
+ colorstr("train: ")
828
+ + ", ".join(f"{k}={v}" for k, v in vars(opt).items())
829
+ )
830
+ check_git_status()
831
+ check_requirements(
832
+ requirements=FILE.parent / "requirements.txt", exclude=["thop"]
833
+ )
834
+
835
+ # Resume
836
+ if (
837
+ opt.resume and not check_wandb_resume(opt) and not opt.evolve
838
+ ): # resume an interrupted run
839
+ ckpt = (
840
+ opt.resume if isinstance(opt.resume, str) else get_latest_run()
841
+ ) # specified or most recent path
842
+ assert os.path.isfile(
843
+ ckpt
844
+ ), "ERROR: --resume checkpoint does not exist"
845
+ with open(Path(ckpt).parent.parent / "opt.yaml") as f:
846
+ opt = argparse.Namespace(**yaml.safe_load(f)) # replace
847
+ opt.cfg, opt.weights, opt.resume = "", ckpt, True # reinstate
848
+ LOGGER.info(f"Resuming training from {ckpt}")
849
+ else:
850
+ opt.data, opt.cfg, opt.hyp = (
851
+ check_file(opt.data),
852
+ check_yaml(opt.cfg),
853
+ check_yaml(opt.hyp),
854
+ ) # check YAMLs
855
+ assert len(opt.cfg) or len(
856
+ opt.weights
857
+ ), "either --cfg or --weights must be specified"
858
+ if opt.evolve:
859
+ opt.project = "runs/evolve"
860
+ opt.exist_ok = opt.resume
861
+ opt.save_dir = str(
862
+ increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
863
+ )
864
+
865
+ # DDP mode
866
+ device = select_device(opt.device, batch_size=opt.batch_size)
867
+ if LOCAL_RANK != -1:
868
+ from datetime import timedelta
869
+
870
+ assert (
871
+ torch.cuda.device_count() > LOCAL_RANK
872
+ ), "insufficient CUDA devices for DDP command"
873
+ assert (
874
+ opt.batch_size % WORLD_SIZE == 0
875
+ ), "--batch-size must be multiple of CUDA device count"
876
+ assert (
877
+ not opt.image_weights
878
+ ), "--image-weights argument is not compatible with DDP training"
879
+ assert (
880
+ not opt.evolve
881
+ ), "--evolve argument is not compatible with DDP training"
882
+ torch.cuda.set_device(LOCAL_RANK)
883
+ device = torch.device("cuda", LOCAL_RANK)
884
+ dist.init_process_group(
885
+ backend="nccl" if dist.is_nccl_available() else "gloo"
886
+ )
887
+
888
+ # Train
889
+ if not opt.evolve:
890
+ train(opt.hyp, opt, device, callbacks)
891
+ if WORLD_SIZE > 1 and RANK == 0:
892
+ _ = [
893
+ print("Destroying process group... ", end=""),
894
+ dist.destroy_process_group(),
895
+ print("Done."),
896
+ ]
897
+
898
+ # Evolve hyperparameters (optional)
899
+ else:
900
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
901
+ meta = {
902
+ "lr0": (
903
+ 1,
904
+ 1e-5,
905
+ 1e-1,
906
+ ), # initial learning rate (SGD=1E-2, Adam=1E-3)
907
+ "lrf": (
908
+ 1,
909
+ 0.01,
910
+ 1.0,
911
+ ), # final OneCycleLR learning rate (lr0 * lrf)
912
+ "momentum": (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
913
+ "weight_decay": (1, 0.0, 0.001), # optimizer weight decay
914
+ "warmup_epochs": (1, 0.0, 5.0), # warmup epochs (fractions ok)
915
+ "warmup_momentum": (1, 0.0, 0.95), # warmup initial momentum
916
+ "warmup_bias_lr": (1, 0.0, 0.2), # warmup initial bias lr
917
+ "box": (1, 0.02, 0.2), # box loss gain
918
+ "cls": (1, 0.2, 4.0), # cls loss gain
919
+ "cls_pw": (1, 0.5, 2.0), # cls BCELoss positive_weight
920
+ "obj": (1, 0.2, 4.0), # obj loss gain (scale with pixels)
921
+ "obj_pw": (1, 0.5, 2.0), # obj BCELoss positive_weight
922
+ "iou_t": (0, 0.1, 0.7), # IoU training threshold
923
+ "anchor_t": (1, 2.0, 8.0), # anchor-multiple threshold
924
+ "anchors": (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
925
+ "fl_gamma": (
926
+ 0,
927
+ 0.0,
928
+ 2.0,
929
+ ), # focal loss gamma (efficientDet default gamma=1.5)
930
+ "hsv_h": (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
931
+ "hsv_s": (
932
+ 1,
933
+ 0.0,
934
+ 0.9,
935
+ ), # image HSV-Saturation augmentation (fraction)
936
+ "hsv_v": (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
937
+ "degrees": (1, 0.0, 45.0), # image rotation (+/- deg)
938
+ "translate": (1, 0.0, 0.9), # image translation (+/- fraction)
939
+ "scale": (1, 0.0, 0.9), # image scale (+/- gain)
940
+ "shear": (1, 0.0, 10.0), # image shear (+/- deg)
941
+ "perspective": (
942
+ 0,
943
+ 0.0,
944
+ 0.001,
945
+ ), # image perspective (+/- fraction), range 0-0.001
946
+ "flipud": (1, 0.0, 1.0), # image flip up-down (probability)
947
+ "fliplr": (0, 0.0, 1.0), # image flip left-right (probability)
948
+ "mosaic": (1, 0.0, 1.0), # image mixup (probability)
949
+ "mixup": (1, 0.0, 1.0), # image mixup (probability)
950
+ "copy_paste": (1, 0.0, 1.0),
951
+ } # segment copy-paste (probability)
952
+
953
+ with open(opt.hyp) as f:
954
+ hyp = yaml.safe_load(f) # load hyps dict
955
+ if "anchors" not in hyp: # anchors commented in hyp.yaml
956
+ hyp["anchors"] = 3
957
+ opt.noval, opt.nosave, save_dir = (
958
+ True,
959
+ True,
960
+ Path(opt.save_dir),
961
+ ) # only val/save final epoch
962
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
963
+ evolve_yaml, evolve_csv = (
964
+ save_dir / "hyp_evolve.yaml",
965
+ save_dir / "evolve.csv",
966
+ )
967
+ if opt.bucket:
968
+ os.system(
969
+ f"gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}"
970
+ ) # download evolve.csv if exists
971
+
972
+ for _ in range(opt.evolve): # generations to evolve
973
+ if (
974
+ evolve_csv.exists()
975
+ ): # if evolve.csv exists: select best hyps and mutate
976
+ # Select parent(s)
977
+ parent = (
978
+ "single" # parent selection method: 'single' or 'weighted'
979
+ )
980
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
981
+ n = min(5, len(x)) # number of previous results to consider
982
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
983
+ w = fitness(x) - fitness(x).min() + 1e-6 # weights (sum > 0)
984
+ if parent == "single" or len(x) == 1:
985
+ # x = x[random.randint(0, n - 1)] # random selection
986
+ x = x[
987
+ random.choices(range(n), weights=w)[0]
988
+ ] # weighted selection
989
+ elif parent == "weighted":
990
+ x = (x * w.reshape(n, 1)).sum(
991
+ 0
992
+ ) / w.sum() # weighted combination
993
+
994
+ # Mutate
995
+ mp, s = 0.8, 0.2 # mutation probability, sigma
996
+ npr = np.random
997
+ npr.seed(int(time.time()))
998
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
999
+ ng = len(meta)
1000
+ v = np.ones(ng)
1001
+ while all(
1002
+ v == 1
1003
+ ): # mutate until a change occurs (prevent duplicates)
1004
+ v = (
1005
+ g
1006
+ * (npr.random(ng) < mp)
1007
+ * npr.randn(ng)
1008
+ * npr.random()
1009
+ * s
1010
+ + 1
1011
+ ).clip(0.3, 3.0)
1012
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
1013
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
1014
+
1015
+ # Constrain to limits
1016
+ for k, v in meta.items():
1017
+ hyp[k] = max(hyp[k], v[1]) # lower limit
1018
+ hyp[k] = min(hyp[k], v[2]) # upper limit
1019
+ hyp[k] = round(hyp[k], 5) # significant digits
1020
+
1021
+ # Train mutation
1022
+ results = train(hyp.copy(), opt, device, callbacks)
1023
+
1024
+ # Write mutation results
1025
+ print_mutation(results, hyp.copy(), save_dir, opt.bucket)
1026
+
1027
+ # Plot results
1028
+ plot_evolve(evolve_csv)
1029
+ print(
1030
+ f"Hyperparameter evolution finished\n"
1031
+ f"Results saved to {colorstr('bold', save_dir)}\n"
1032
+ f"Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}"
1033
+ )
1034
+
1035
+
1036
+ def run(**kwargs):
1037
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
1038
+ opt = parse_opt(True)
1039
+ for k, v in kwargs.items():
1040
+ setattr(opt, k, v)
1041
+ main(opt)
1042
+
1043
+
1044
+ if __name__ == "__main__":
1045
+ opt = parse_opt()
1046
+ main(opt)
tutorial.ipynb ADDED
@@ -0,0 +1,1022 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "name": "YOLOv5 Tutorial",
7
+ "provenance": [],
8
+ "collapsed_sections": [],
9
+ "include_colab_link": true
10
+ },
11
+ "kernelspec": {
12
+ "name": "python3",
13
+ "display_name": "Python 3"
14
+ },
15
+ "accelerator": "GPU",
16
+ "widgets": {
17
+ "application/vnd.jupyter.widget-state+json": {
18
+ "484511f272e64eab8b42e68dac5f7a66": {
19
+ "model_module": "@jupyter-widgets/controls",
20
+ "model_name": "HBoxModel",
21
+ "model_module_version": "1.5.0",
22
+ "state": {
23
+ "_view_name": "HBoxView",
24
+ "_dom_classes": [],
25
+ "_model_name": "HBoxModel",
26
+ "_view_module": "@jupyter-widgets/controls",
27
+ "_model_module_version": "1.5.0",
28
+ "_view_count": null,
29
+ "_view_module_version": "1.5.0",
30
+ "box_style": "",
31
+ "layout": "IPY_MODEL_78cceec059784f2bb36988d3336e4d56",
32
+ "_model_module": "@jupyter-widgets/controls",
33
+ "children": [
34
+ "IPY_MODEL_ab93d8b65c134605934ff9ec5efb1bb6",
35
+ "IPY_MODEL_30df865ded4c434191bce772c9a82f3a",
36
+ "IPY_MODEL_20cdc61eb3404f42a12b37901b0d85fb"
37
+ ]
38
+ }
39
+ },
40
+ "78cceec059784f2bb36988d3336e4d56": {
41
+ "model_module": "@jupyter-widgets/base",
42
+ "model_name": "LayoutModel",
43
+ "model_module_version": "1.2.0",
44
+ "state": {
45
+ "_view_name": "LayoutView",
46
+ "grid_template_rows": null,
47
+ "right": null,
48
+ "justify_content": null,
49
+ "_view_module": "@jupyter-widgets/base",
50
+ "overflow": null,
51
+ "_model_module_version": "1.2.0",
52
+ "_view_count": null,
53
+ "flex_flow": null,
54
+ "width": null,
55
+ "min_width": null,
56
+ "border": null,
57
+ "align_items": null,
58
+ "bottom": null,
59
+ "_model_module": "@jupyter-widgets/base",
60
+ "top": null,
61
+ "grid_column": null,
62
+ "overflow_y": null,
63
+ "overflow_x": null,
64
+ "grid_auto_flow": null,
65
+ "grid_area": null,
66
+ "grid_template_columns": null,
67
+ "flex": null,
68
+ "_model_name": "LayoutModel",
69
+ "justify_items": null,
70
+ "grid_row": null,
71
+ "max_height": null,
72
+ "align_content": null,
73
+ "visibility": null,
74
+ "align_self": null,
75
+ "height": null,
76
+ "min_height": null,
77
+ "padding": null,
78
+ "grid_auto_rows": null,
79
+ "grid_gap": null,
80
+ "max_width": null,
81
+ "order": null,
82
+ "_view_module_version": "1.2.0",
83
+ "grid_template_areas": null,
84
+ "object_position": null,
85
+ "object_fit": null,
86
+ "grid_auto_columns": null,
87
+ "margin": null,
88
+ "display": null,
89
+ "left": null
90
+ }
91
+ },
92
+ "ab93d8b65c134605934ff9ec5efb1bb6": {
93
+ "model_module": "@jupyter-widgets/controls",
94
+ "model_name": "HTMLModel",
95
+ "model_module_version": "1.5.0",
96
+ "state": {
97
+ "_view_name": "HTMLView",
98
+ "style": "IPY_MODEL_2d7239993a9645b09b221405ac682743",
99
+ "_dom_classes": [],
100
+ "description": "",
101
+ "_model_name": "HTMLModel",
102
+ "placeholder": "​",
103
+ "_view_module": "@jupyter-widgets/controls",
104
+ "_model_module_version": "1.5.0",
105
+ "value": "100%",
106
+ "_view_count": null,
107
+ "_view_module_version": "1.5.0",
108
+ "description_tooltip": null,
109
+ "_model_module": "@jupyter-widgets/controls",
110
+ "layout": "IPY_MODEL_17b5a87f92104ec7ab96bf507637d0d2"
111
+ }
112
+ },
113
+ "30df865ded4c434191bce772c9a82f3a": {
114
+ "model_module": "@jupyter-widgets/controls",
115
+ "model_name": "FloatProgressModel",
116
+ "model_module_version": "1.5.0",
117
+ "state": {
118
+ "_view_name": "ProgressView",
119
+ "style": "IPY_MODEL_2358bfb2270247359e94b066b3cc3d1f",
120
+ "_dom_classes": [],
121
+ "description": "",
122
+ "_model_name": "FloatProgressModel",
123
+ "bar_style": "success",
124
+ "max": 818322941,
125
+ "_view_module": "@jupyter-widgets/controls",
126
+ "_model_module_version": "1.5.0",
127
+ "value": 818322941,
128
+ "_view_count": null,
129
+ "_view_module_version": "1.5.0",
130
+ "orientation": "horizontal",
131
+ "min": 0,
132
+ "description_tooltip": null,
133
+ "_model_module": "@jupyter-widgets/controls",
134
+ "layout": "IPY_MODEL_3e984405db654b0b83b88b2db08baffd"
135
+ }
136
+ },
137
+ "20cdc61eb3404f42a12b37901b0d85fb": {
138
+ "model_module": "@jupyter-widgets/controls",
139
+ "model_name": "HTMLModel",
140
+ "model_module_version": "1.5.0",
141
+ "state": {
142
+ "_view_name": "HTMLView",
143
+ "style": "IPY_MODEL_654d8a19b9f949c6bbdaf8b0875c931e",
144
+ "_dom_classes": [],
145
+ "description": "",
146
+ "_model_name": "HTMLModel",
147
+ "placeholder": "​",
148
+ "_view_module": "@jupyter-widgets/controls",
149
+ "_model_module_version": "1.5.0",
150
+ "value": " 780M/780M [00:33&lt;00:00, 24.4MB/s]",
151
+ "_view_count": null,
152
+ "_view_module_version": "1.5.0",
153
+ "description_tooltip": null,
154
+ "_model_module": "@jupyter-widgets/controls",
155
+ "layout": "IPY_MODEL_896030c5d13b415aaa05032818d81a6e"
156
+ }
157
+ },
158
+ "2d7239993a9645b09b221405ac682743": {
159
+ "model_module": "@jupyter-widgets/controls",
160
+ "model_name": "DescriptionStyleModel",
161
+ "model_module_version": "1.5.0",
162
+ "state": {
163
+ "_view_name": "StyleView",
164
+ "_model_name": "DescriptionStyleModel",
165
+ "description_width": "",
166
+ "_view_module": "@jupyter-widgets/base",
167
+ "_model_module_version": "1.5.0",
168
+ "_view_count": null,
169
+ "_view_module_version": "1.2.0",
170
+ "_model_module": "@jupyter-widgets/controls"
171
+ }
172
+ },
173
+ "17b5a87f92104ec7ab96bf507637d0d2": {
174
+ "model_module": "@jupyter-widgets/base",
175
+ "model_name": "LayoutModel",
176
+ "model_module_version": "1.2.0",
177
+ "state": {
178
+ "_view_name": "LayoutView",
179
+ "grid_template_rows": null,
180
+ "right": null,
181
+ "justify_content": null,
182
+ "_view_module": "@jupyter-widgets/base",
183
+ "overflow": null,
184
+ "_model_module_version": "1.2.0",
185
+ "_view_count": null,
186
+ "flex_flow": null,
187
+ "width": null,
188
+ "min_width": null,
189
+ "border": null,
190
+ "align_items": null,
191
+ "bottom": null,
192
+ "_model_module": "@jupyter-widgets/base",
193
+ "top": null,
194
+ "grid_column": null,
195
+ "overflow_y": null,
196
+ "overflow_x": null,
197
+ "grid_auto_flow": null,
198
+ "grid_area": null,
199
+ "grid_template_columns": null,
200
+ "flex": null,
201
+ "_model_name": "LayoutModel",
202
+ "justify_items": null,
203
+ "grid_row": null,
204
+ "max_height": null,
205
+ "align_content": null,
206
+ "visibility": null,
207
+ "align_self": null,
208
+ "height": null,
209
+ "min_height": null,
210
+ "padding": null,
211
+ "grid_auto_rows": null,
212
+ "grid_gap": null,
213
+ "max_width": null,
214
+ "order": null,
215
+ "_view_module_version": "1.2.0",
216
+ "grid_template_areas": null,
217
+ "object_position": null,
218
+ "object_fit": null,
219
+ "grid_auto_columns": null,
220
+ "margin": null,
221
+ "display": null,
222
+ "left": null
223
+ }
224
+ },
225
+ "2358bfb2270247359e94b066b3cc3d1f": {
226
+ "model_module": "@jupyter-widgets/controls",
227
+ "model_name": "ProgressStyleModel",
228
+ "model_module_version": "1.5.0",
229
+ "state": {
230
+ "_view_name": "StyleView",
231
+ "_model_name": "ProgressStyleModel",
232
+ "description_width": "",
233
+ "_view_module": "@jupyter-widgets/base",
234
+ "_model_module_version": "1.5.0",
235
+ "_view_count": null,
236
+ "_view_module_version": "1.2.0",
237
+ "bar_color": null,
238
+ "_model_module": "@jupyter-widgets/controls"
239
+ }
240
+ },
241
+ "3e984405db654b0b83b88b2db08baffd": {
242
+ "model_module": "@jupyter-widgets/base",
243
+ "model_name": "LayoutModel",
244
+ "model_module_version": "1.2.0",
245
+ "state": {
246
+ "_view_name": "LayoutView",
247
+ "grid_template_rows": null,
248
+ "right": null,
249
+ "justify_content": null,
250
+ "_view_module": "@jupyter-widgets/base",
251
+ "overflow": null,
252
+ "_model_module_version": "1.2.0",
253
+ "_view_count": null,
254
+ "flex_flow": null,
255
+ "width": null,
256
+ "min_width": null,
257
+ "border": null,
258
+ "align_items": null,
259
+ "bottom": null,
260
+ "_model_module": "@jupyter-widgets/base",
261
+ "top": null,
262
+ "grid_column": null,
263
+ "overflow_y": null,
264
+ "overflow_x": null,
265
+ "grid_auto_flow": null,
266
+ "grid_area": null,
267
+ "grid_template_columns": null,
268
+ "flex": null,
269
+ "_model_name": "LayoutModel",
270
+ "justify_items": null,
271
+ "grid_row": null,
272
+ "max_height": null,
273
+ "align_content": null,
274
+ "visibility": null,
275
+ "align_self": null,
276
+ "height": null,
277
+ "min_height": null,
278
+ "padding": null,
279
+ "grid_auto_rows": null,
280
+ "grid_gap": null,
281
+ "max_width": null,
282
+ "order": null,
283
+ "_view_module_version": "1.2.0",
284
+ "grid_template_areas": null,
285
+ "object_position": null,
286
+ "object_fit": null,
287
+ "grid_auto_columns": null,
288
+ "margin": null,
289
+ "display": null,
290
+ "left": null
291
+ }
292
+ },
293
+ "654d8a19b9f949c6bbdaf8b0875c931e": {
294
+ "model_module": "@jupyter-widgets/controls",
295
+ "model_name": "DescriptionStyleModel",
296
+ "model_module_version": "1.5.0",
297
+ "state": {
298
+ "_view_name": "StyleView",
299
+ "_model_name": "DescriptionStyleModel",
300
+ "description_width": "",
301
+ "_view_module": "@jupyter-widgets/base",
302
+ "_model_module_version": "1.5.0",
303
+ "_view_count": null,
304
+ "_view_module_version": "1.2.0",
305
+ "_model_module": "@jupyter-widgets/controls"
306
+ }
307
+ },
308
+ "896030c5d13b415aaa05032818d81a6e": {
309
+ "model_module": "@jupyter-widgets/base",
310
+ "model_name": "LayoutModel",
311
+ "model_module_version": "1.2.0",
312
+ "state": {
313
+ "_view_name": "LayoutView",
314
+ "grid_template_rows": null,
315
+ "right": null,
316
+ "justify_content": null,
317
+ "_view_module": "@jupyter-widgets/base",
318
+ "overflow": null,
319
+ "_model_module_version": "1.2.0",
320
+ "_view_count": null,
321
+ "flex_flow": null,
322
+ "width": null,
323
+ "min_width": null,
324
+ "border": null,
325
+ "align_items": null,
326
+ "bottom": null,
327
+ "_model_module": "@jupyter-widgets/base",
328
+ "top": null,
329
+ "grid_column": null,
330
+ "overflow_y": null,
331
+ "overflow_x": null,
332
+ "grid_auto_flow": null,
333
+ "grid_area": null,
334
+ "grid_template_columns": null,
335
+ "flex": null,
336
+ "_model_name": "LayoutModel",
337
+ "justify_items": null,
338
+ "grid_row": null,
339
+ "max_height": null,
340
+ "align_content": null,
341
+ "visibility": null,
342
+ "align_self": null,
343
+ "height": null,
344
+ "min_height": null,
345
+ "padding": null,
346
+ "grid_auto_rows": null,
347
+ "grid_gap": null,
348
+ "max_width": null,
349
+ "order": null,
350
+ "_view_module_version": "1.2.0",
351
+ "grid_template_areas": null,
352
+ "object_position": null,
353
+ "object_fit": null,
354
+ "grid_auto_columns": null,
355
+ "margin": null,
356
+ "display": null,
357
+ "left": null
358
+ }
359
+ }
360
+ }
361
+ }
362
+ },
363
+ "cells": [
364
+ {
365
+ "cell_type": "markdown",
366
+ "metadata": {
367
+ "id": "view-in-github",
368
+ "colab_type": "text"
369
+ },
370
+ "source": [
371
+ "<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "markdown",
376
+ "metadata": {
377
+ "id": "t6MPjfT5NrKQ"
378
+ },
379
+ "source": [
380
+ "<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
381
+ "<img src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n",
382
+ "\n",
383
+ "This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n",
384
+ "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!"
385
+ ]
386
+ },
387
+ {
388
+ "cell_type": "markdown",
389
+ "metadata": {
390
+ "id": "7mGmQbAO5pQb"
391
+ },
392
+ "source": [
393
+ "# Setup\n",
394
+ "\n",
395
+ "Clone repo, install dependencies and check PyTorch and GPU."
396
+ ]
397
+ },
398
+ {
399
+ "cell_type": "code",
400
+ "metadata": {
401
+ "id": "wbvMlHd_QwMG",
402
+ "colab": {
403
+ "base_uri": "https://localhost:8080/"
404
+ },
405
+ "outputId": "4d67116a-43e9-4d84-d19e-1edd83f23a04"
406
+ },
407
+ "source": [
408
+ "!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
409
+ "%cd yolov5\n",
410
+ "%pip install -qr requirements.txt # install dependencies\n",
411
+ "\n",
412
+ "import torch\n",
413
+ "from IPython.display import Image, clear_output # to display images\n",
414
+ "\n",
415
+ "clear_output()\n",
416
+ "print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")"
417
+ ],
418
+ "execution_count": null,
419
+ "outputs": [
420
+ {
421
+ "output_type": "stream",
422
+ "text": [
423
+ "Setup complete. Using torch 1.9.0+cu102 (Tesla V100-SXM2-16GB)\n"
424
+ ],
425
+ "name": "stdout"
426
+ }
427
+ ]
428
+ },
429
+ {
430
+ "cell_type": "markdown",
431
+ "metadata": {
432
+ "id": "4JnkELT0cIJg"
433
+ },
434
+ "source": [
435
+ "# 1. Inference\n",
436
+ "\n",
437
+ "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
438
+ "\n",
439
+ "```shell\n",
440
+ "python detect.py --source 0 # webcam\n",
441
+ " file.jpg # image \n",
442
+ " file.mp4 # video\n",
443
+ " path/ # directory\n",
444
+ " path/*.jpg # glob\n",
445
+ " 'https://youtu.be/NUsoVlDFqZg' # YouTube\n",
446
+ " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
447
+ "```"
448
+ ]
449
+ },
450
+ {
451
+ "cell_type": "code",
452
+ "metadata": {
453
+ "id": "zR9ZbuQCH7FX",
454
+ "colab": {
455
+ "base_uri": "https://localhost:8080/"
456
+ },
457
+ "outputId": "8b728908-81ab-4861-edb0-4d0c46c439fb"
458
+ },
459
+ "source": [
460
+ "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n",
461
+ "Image(filename='runs/detect/exp/zidane.jpg', width=600)"
462
+ ],
463
+ "execution_count": null,
464
+ "outputs": [
465
+ {
466
+ "output_type": "stream",
467
+ "text": [
468
+ "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images/, imgsz=640, conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False\n",
469
+ "YOLOv5 🚀 v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
470
+ "\n",
471
+ "Fusing layers... \n",
472
+ "Model Summary: 224 layers, 7266973 parameters, 0 gradients\n",
473
+ "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.007s)\n",
474
+ "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.007s)\n",
475
+ "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n",
476
+ "Done. (0.091s)\n"
477
+ ],
478
+ "name": "stdout"
479
+ }
480
+ ]
481
+ },
482
+ {
483
+ "cell_type": "markdown",
484
+ "metadata": {
485
+ "id": "hkAzDWJ7cWTr"
486
+ },
487
+ "source": [
488
+ "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
489
+ "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
490
+ ]
491
+ },
492
+ {
493
+ "cell_type": "markdown",
494
+ "metadata": {
495
+ "id": "0eq1SMWl6Sfn"
496
+ },
497
+ "source": [
498
+ "# 2. Validate\n",
499
+ "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation."
500
+ ]
501
+ },
502
+ {
503
+ "cell_type": "markdown",
504
+ "metadata": {
505
+ "id": "eyTZYGgRjnMc"
506
+ },
507
+ "source": [
508
+ "## COCO val2017\n",
509
+ "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy."
510
+ ]
511
+ },
512
+ {
513
+ "cell_type": "code",
514
+ "metadata": {
515
+ "id": "WQPtK1QYVaD_",
516
+ "colab": {
517
+ "base_uri": "https://localhost:8080/",
518
+ "height": 48,
519
+ "referenced_widgets": [
520
+ "484511f272e64eab8b42e68dac5f7a66",
521
+ "78cceec059784f2bb36988d3336e4d56",
522
+ "ab93d8b65c134605934ff9ec5efb1bb6",
523
+ "30df865ded4c434191bce772c9a82f3a",
524
+ "20cdc61eb3404f42a12b37901b0d85fb",
525
+ "2d7239993a9645b09b221405ac682743",
526
+ "17b5a87f92104ec7ab96bf507637d0d2",
527
+ "2358bfb2270247359e94b066b3cc3d1f",
528
+ "3e984405db654b0b83b88b2db08baffd",
529
+ "654d8a19b9f949c6bbdaf8b0875c931e",
530
+ "896030c5d13b415aaa05032818d81a6e"
531
+ ]
532
+ },
533
+ "outputId": "7e6f5c96-c819-43e1-cd03-d3b9878cf8de"
534
+ },
535
+ "source": [
536
+ "# Download COCO val2017\n",
537
+ "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
538
+ "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
539
+ ],
540
+ "execution_count": null,
541
+ "outputs": [
542
+ {
543
+ "output_type": "display_data",
544
+ "data": {
545
+ "application/vnd.jupyter.widget-view+json": {
546
+ "model_id": "484511f272e64eab8b42e68dac5f7a66",
547
+ "version_minor": 0,
548
+ "version_major": 2
549
+ },
550
+ "text/plain": [
551
+ " 0%| | 0.00/780M [00:00<?, ?B/s]"
552
+ ]
553
+ },
554
+ "metadata": {
555
+ "tags": []
556
+ }
557
+ }
558
+ ]
559
+ },
560
+ {
561
+ "cell_type": "code",
562
+ "metadata": {
563
+ "id": "X58w8JLpMnjH",
564
+ "colab": {
565
+ "base_uri": "https://localhost:8080/"
566
+ },
567
+ "outputId": "3dd0e2fc-aecf-4108-91b1-6392da1863cb"
568
+ },
569
+ "source": [
570
+ "# Run YOLOv5x on COCO val2017\n",
571
+ "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
572
+ ],
573
+ "execution_count": null,
574
+ "outputs": [
575
+ {
576
+ "output_type": "stream",
577
+ "text": [
578
+ "\u001b[34m\u001b[1mval: \u001b[0mdata=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
579
+ "YOLOv5 🚀 v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
580
+ "\n",
581
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
582
+ "100% 168M/168M [00:08<00:00, 20.6MB/s]\n",
583
+ "\n",
584
+ "Fusing layers... \n",
585
+ "Model Summary: 476 layers, 87730285 parameters, 0 gradients\n",
586
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2749.96it/s]\n",
587
+ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
588
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:08<00:00, 2.28it/s]\n",
589
+ " all 5000 36335 0.746 0.626 0.68 0.49\n",
590
+ "Speed: 0.1ms pre-process, 5.1ms inference, 1.6ms NMS per image at shape (32, 3, 640, 640)\n",
591
+ "\n",
592
+ "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
593
+ "loading annotations into memory...\n",
594
+ "Done (t=0.46s)\n",
595
+ "creating index...\n",
596
+ "index created!\n",
597
+ "Loading and preparing results...\n",
598
+ "DONE (t=4.94s)\n",
599
+ "creating index...\n",
600
+ "index created!\n",
601
+ "Running per image evaluation...\n",
602
+ "Evaluate annotation type *bbox*\n",
603
+ "DONE (t=83.60s).\n",
604
+ "Accumulating evaluation results...\n",
605
+ "DONE (t=13.22s).\n",
606
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n",
607
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
608
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n",
609
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351\n",
610
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551\n",
611
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644\n",
612
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382\n",
613
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.629\n",
614
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.681\n",
615
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n",
616
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n",
617
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n",
618
+ "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
619
+ ],
620
+ "name": "stdout"
621
+ }
622
+ ]
623
+ },
624
+ {
625
+ "cell_type": "markdown",
626
+ "metadata": {
627
+ "id": "rc_KbFk0juX2"
628
+ },
629
+ "source": [
630
+ "## COCO test-dev2017\n",
631
+ "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794."
632
+ ]
633
+ },
634
+ {
635
+ "cell_type": "code",
636
+ "metadata": {
637
+ "id": "V0AJnSeCIHyJ"
638
+ },
639
+ "source": [
640
+ "# Download COCO test-dev2017\n",
641
+ "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels.zip', 'tmp.zip')\n",
642
+ "!unzip -q tmp.zip -d ../ && rm tmp.zip # unzip labels\n",
643
+ "!f=\"test2017.zip\" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7GB, 41k images\n",
644
+ "%mv ./test2017 ../coco/images # move to /coco"
645
+ ],
646
+ "execution_count": null,
647
+ "outputs": []
648
+ },
649
+ {
650
+ "cell_type": "code",
651
+ "metadata": {
652
+ "id": "29GJXAP_lPrt"
653
+ },
654
+ "source": [
655
+ "# Run YOLOv5s on COCO test-dev2017 using --task test\n",
656
+ "!python val.py --weights yolov5s.pt --data coco.yaml --task test"
657
+ ],
658
+ "execution_count": null,
659
+ "outputs": []
660
+ },
661
+ {
662
+ "cell_type": "markdown",
663
+ "metadata": {
664
+ "id": "VUOiNLtMP5aG"
665
+ },
666
+ "source": [
667
+ "# 3. Train\n",
668
+ "\n",
669
+ "Download [COCO128](https://www.kaggle.com/ultralytics/coco128), a small 128-image tutorial dataset, start tensorboard and train YOLOv5s from a pretrained checkpoint for 3 epochs (note actual training is typically much longer, around **300-1000 epochs**, depending on your dataset)."
670
+ ]
671
+ },
672
+ {
673
+ "cell_type": "code",
674
+ "metadata": {
675
+ "id": "Knxi2ncxWffW"
676
+ },
677
+ "source": [
678
+ "# Download COCO128\n",
679
+ "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
680
+ "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
681
+ ],
682
+ "execution_count": null,
683
+ "outputs": []
684
+ },
685
+ {
686
+ "cell_type": "markdown",
687
+ "metadata": {
688
+ "id": "_pOkGLv1dMqh"
689
+ },
690
+ "source": [
691
+ "Train a YOLOv5s model on [COCO128](https://www.kaggle.com/ultralytics/coco128) with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and **COCO, COCO128, and VOC datasets are downloaded automatically** on first use.\n",
692
+ "\n",
693
+ "All training results are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n"
694
+ ]
695
+ },
696
+ {
697
+ "cell_type": "code",
698
+ "metadata": {
699
+ "id": "bOy5KI2ncnWd"
700
+ },
701
+ "source": [
702
+ "# Tensorboard (optional)\n",
703
+ "%load_ext tensorboard\n",
704
+ "%tensorboard --logdir runs/train"
705
+ ],
706
+ "execution_count": null,
707
+ "outputs": []
708
+ },
709
+ {
710
+ "cell_type": "code",
711
+ "metadata": {
712
+ "id": "2fLAV42oNb7M"
713
+ },
714
+ "source": [
715
+ "# Weights & Biases (optional)\n",
716
+ "%pip install -q wandb\n",
717
+ "import wandb\n",
718
+ "wandb.login()"
719
+ ],
720
+ "execution_count": null,
721
+ "outputs": []
722
+ },
723
+ {
724
+ "cell_type": "code",
725
+ "metadata": {
726
+ "id": "1NcFxRcFdJ_O",
727
+ "colab": {
728
+ "base_uri": "https://localhost:8080/"
729
+ },
730
+ "outputId": "00ea4b14-a75c-44a2-a913-03b431b69de5"
731
+ },
732
+ "source": [
733
+ "# Train YOLOv5s on COCO128 for 3 epochs\n",
734
+ "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
735
+ ],
736
+ "execution_count": null,
737
+ "outputs": [
738
+ {
739
+ "output_type": "stream",
740
+ "text": [
741
+ "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1, freeze=0\n",
742
+ "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
743
+ "YOLOv5 🚀 v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
744
+ "\n",
745
+ "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
746
+ "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n",
747
+ "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
748
+ "2021-08-15 14:40:43.449642: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n",
749
+ "\n",
750
+ " from n params module arguments \n",
751
+ " 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
752
+ " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
753
+ " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
754
+ " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
755
+ " 4 -1 3 156928 models.common.C3 [128, 128, 3] \n",
756
+ " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
757
+ " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
758
+ " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
759
+ " 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n",
760
+ " 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
761
+ " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
762
+ " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
763
+ " 12 [-1, 6] 1 0 models.common.Concat [1] \n",
764
+ " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
765
+ " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
766
+ " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
767
+ " 16 [-1, 4] 1 0 models.common.Concat [1] \n",
768
+ " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
769
+ " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
770
+ " 19 [-1, 14] 1 0 models.common.Concat [1] \n",
771
+ " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
772
+ " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
773
+ " 22 [-1, 10] 1 0 models.common.Concat [1] \n",
774
+ " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
775
+ " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
776
+ "Model Summary: 283 layers, 7276605 parameters, 7276605 gradients, 17.1 GFLOPs\n",
777
+ "\n",
778
+ "Transferred 362/362 items from yolov5s.pt\n",
779
+ "Scaled weight_decay = 0.0005\n",
780
+ "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 59 weight, 62 weight (no decay), 62 bias\n",
781
+ "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
782
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2440.28it/s]\n",
783
+ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../datasets/coco128/labels/train2017.cache\n",
784
+ "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 302.61it/s]\n",
785
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
786
+ "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 142.55it/s]\n",
787
+ "[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n",
788
+ "[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n",
789
+ "Plotting labels... \n",
790
+ "\n",
791
+ "\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
792
+ "Image sizes 640 train, 640 val\n",
793
+ "Using 2 dataloader workers\n",
794
+ "Logging results to runs/train/exp\n",
795
+ "Starting training for 3 epochs...\n",
796
+ "\n",
797
+ " Epoch gpu_mem box obj cls labels img_size\n",
798
+ " 0/2 3.64G 0.04492 0.0674 0.02213 298 640: 100% 8/8 [00:03<00:00, 2.05it/s]\n",
799
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.70it/s]\n",
800
+ " all 128 929 0.686 0.565 0.642 0.421\n",
801
+ "\n",
802
+ " Epoch gpu_mem box obj cls labels img_size\n",
803
+ " 1/2 5.04G 0.04403 0.0611 0.01986 232 640: 100% 8/8 [00:01<00:00, 5.59it/s]\n",
804
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.46it/s]\n",
805
+ " all 128 929 0.694 0.563 0.654 0.425\n",
806
+ "\n",
807
+ " Epoch gpu_mem box obj cls labels img_size\n",
808
+ " 2/2 5.04G 0.04616 0.07056 0.02071 214 640: 100% 8/8 [00:01<00:00, 5.94it/s]\n",
809
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:02<00:00, 1.52it/s]\n",
810
+ " all 128 929 0.711 0.562 0.66 0.431\n",
811
+ "\n",
812
+ "3 epochs completed in 0.005 hours.\n",
813
+ "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
814
+ "Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
815
+ "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
816
+ ],
817
+ "name": "stdout"
818
+ }
819
+ ]
820
+ },
821
+ {
822
+ "cell_type": "markdown",
823
+ "metadata": {
824
+ "id": "15glLzbQx5u0"
825
+ },
826
+ "source": [
827
+ "# 4. Visualize"
828
+ ]
829
+ },
830
+ {
831
+ "cell_type": "markdown",
832
+ "metadata": {
833
+ "id": "DLI1JmHU7B0l"
834
+ },
835
+ "source": [
836
+ "## Weights & Biases Logging 🌟 NEW\n",
837
+ "\n",
838
+ "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is now integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n",
839
+ "\n",
840
+ "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n",
841
+ "\n",
842
+ "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/125274843-a27bc600-e30e-11eb-9a44-62af0b7a50a2.png\" width=\"800\">"
843
+ ]
844
+ },
845
+ {
846
+ "cell_type": "markdown",
847
+ "metadata": {
848
+ "id": "-WPvRbS5Swl6"
849
+ },
850
+ "source": [
851
+ "## Local Logging\n",
852
+ "\n",
853
+ "All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.\n",
854
+ "\n",
855
+ "> <img src=\"https://user-images.githubusercontent.com/26833433/131255960-b536647f-7c61-4f60-bbc5-cb2544d71b2a.jpg\" width=\"700\"> \n",
856
+ "`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
857
+ "\n",
858
+ "> <img src=\"https://user-images.githubusercontent.com/26833433/131256748-603cafc7-55d1-4e58-ab26-83657761aed9.jpg\" width=\"700\"> \n",
859
+ "`test_batch0_labels.jpg` shows val batch 0 labels\n",
860
+ "\n",
861
+ "> <img src=\"https://user-images.githubusercontent.com/26833433/131256752-3f25d7a5-7b0f-4bb3-ab78-46343c3800fe.jpg\" width=\"700\"> \n",
862
+ "`test_batch0_pred.jpg` shows val batch 0 _predictions_\n",
863
+ "\n",
864
+ "Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n",
865
+ "\n",
866
+ "```python\n",
867
+ "from utils.plots import plot_results \n",
868
+ "plot_results('path/to/results.csv') # plot 'results.csv' as 'results.png'\n",
869
+ "```\n",
870
+ "\n",
871
+ "<img align=\"left\" width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/126906780-8c5e2990-6116-4de6-b78a-367244a33ccf.png\">"
872
+ ]
873
+ },
874
+ {
875
+ "cell_type": "markdown",
876
+ "metadata": {
877
+ "id": "Zelyeqbyt3GD"
878
+ },
879
+ "source": [
880
+ "# Environments\n",
881
+ "\n",
882
+ "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
883
+ "\n",
884
+ "- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
885
+ "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
886
+ "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
887
+ "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
888
+ ]
889
+ },
890
+ {
891
+ "cell_type": "markdown",
892
+ "metadata": {
893
+ "id": "6Qu7Iesl0p54"
894
+ },
895
+ "source": [
896
+ "# Status\n",
897
+ "\n",
898
+ "![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)\n",
899
+ "\n",
900
+ "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
901
+ ]
902
+ },
903
+ {
904
+ "cell_type": "markdown",
905
+ "metadata": {
906
+ "id": "IEijrePND_2I"
907
+ },
908
+ "source": [
909
+ "# Appendix\n",
910
+ "\n",
911
+ "Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted.\n"
912
+ ]
913
+ },
914
+ {
915
+ "cell_type": "code",
916
+ "metadata": {
917
+ "id": "mcKoSIK2WSzj"
918
+ },
919
+ "source": [
920
+ "# Reproduce\n",
921
+ "for x in 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x':\n",
922
+ " !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.25 --iou 0.45 # speed\n",
923
+ " !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP"
924
+ ],
925
+ "execution_count": null,
926
+ "outputs": []
927
+ },
928
+ {
929
+ "cell_type": "code",
930
+ "metadata": {
931
+ "id": "GMusP4OAxFu6"
932
+ },
933
+ "source": [
934
+ "# PyTorch Hub\n",
935
+ "import torch\n",
936
+ "\n",
937
+ "# Model\n",
938
+ "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')\n",
939
+ "\n",
940
+ "# Images\n",
941
+ "dir = 'https://ultralytics.com/images/'\n",
942
+ "imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images\n",
943
+ "\n",
944
+ "# Inference\n",
945
+ "results = model(imgs)\n",
946
+ "results.print() # or .show(), .save()"
947
+ ],
948
+ "execution_count": null,
949
+ "outputs": []
950
+ },
951
+ {
952
+ "cell_type": "code",
953
+ "metadata": {
954
+ "id": "FGH0ZjkGjejy"
955
+ },
956
+ "source": [
957
+ "# Unit tests\n",
958
+ "%%shell\n",
959
+ "export PYTHONPATH=\"$PWD\" # to run *.py. files in subdirectories\n",
960
+ "\n",
961
+ "rm -rf runs # remove runs/\n",
962
+ "for m in yolov5s; do # models\n",
963
+ " python train.py --weights $m.pt --epochs 3 --img 320 --device 0 # train pretrained\n",
964
+ " python train.py --weights '' --cfg $m.yaml --epochs 3 --img 320 --device 0 # train scratch\n",
965
+ " for d in 0 cpu; do # devices\n",
966
+ " python detect.py --weights $m.pt --device $d # detect official\n",
967
+ " python detect.py --weights runs/train/exp/weights/best.pt --device $d # detect custom\n",
968
+ " python val.py --weights $m.pt --device $d # val official\n",
969
+ " python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom\n",
970
+ " done\n",
971
+ " python hubconf.py # hub\n",
972
+ " python models/yolo.py --cfg $m.yaml # inspect\n",
973
+ " python export.py --weights $m.pt --img 640 --batch 1 # export\n",
974
+ "done"
975
+ ],
976
+ "execution_count": null,
977
+ "outputs": []
978
+ },
979
+ {
980
+ "cell_type": "code",
981
+ "metadata": {
982
+ "id": "gogI-kwi3Tye"
983
+ },
984
+ "source": [
985
+ "# Profile\n",
986
+ "from utils.torch_utils import profile\n",
987
+ "\n",
988
+ "m1 = lambda x: x * torch.sigmoid(x)\n",
989
+ "m2 = torch.nn.SiLU()\n",
990
+ "results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)"
991
+ ],
992
+ "execution_count": null,
993
+ "outputs": []
994
+ },
995
+ {
996
+ "cell_type": "code",
997
+ "metadata": {
998
+ "id": "RVRSOhEvUdb5"
999
+ },
1000
+ "source": [
1001
+ "# Evolve\n",
1002
+ "!python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov5s.pt --cache --noautoanchor --evolve\n",
1003
+ "!d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket # upload results (optional)"
1004
+ ],
1005
+ "execution_count": null,
1006
+ "outputs": []
1007
+ },
1008
+ {
1009
+ "cell_type": "code",
1010
+ "metadata": {
1011
+ "id": "BSgFCAcMbk1R"
1012
+ },
1013
+ "source": [
1014
+ "# VOC\n",
1015
+ "for b, m in zip([64, 48, 32, 16], ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']): # zip(batch_size, model)\n",
1016
+ " !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project VOC --name {m}"
1017
+ ],
1018
+ "execution_count": null,
1019
+ "outputs": []
1020
+ }
1021
+ ]
1022
+ }
utils.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ # from sklearn.externals import joblib
5
+ import joblib
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+ # from .variables import old_ocr_req_cols
10
+ # from .skew_correction import PageSkewWraper
11
+
12
+ const_HW = 1.294117647
13
+ const_W = 600
14
+
15
+
16
+ def bucket_sort(df, colmn, ymax_col="ymax", ymin_col="ymin"):
17
+ df["line_number"] = 0
18
+ colmn.append("line_number")
19
+ array_value = df[colmn].values
20
+ start_index = Line_counter = counter = 0
21
+ ymax, ymin, line_no = (
22
+ colmn.index(ymax_col),
23
+ colmn.index(ymin_col),
24
+ colmn.index("line_number"),
25
+ )
26
+ while counter < len(array_value):
27
+ current_ymax = array_value[start_index][ymax]
28
+ for next_index in range(start_index, len(array_value)):
29
+ counter += 1
30
+
31
+ next_ymin = array_value[next_index][ymin]
32
+ next_ymax = array_value[next_index][ymax]
33
+ if current_ymax > next_ymin:
34
+
35
+ array_value[next_index][line_no] = Line_counter + 1
36
+ # if current_ymax < next_ymax:
37
+
38
+ # current_ymax = next_ymax
39
+ else:
40
+ counter -= 1
41
+ break
42
+ # print(counter, len(array_value), start_index)
43
+ start_index = counter
44
+ Line_counter += 1
45
+ return pd.DataFrame(array_value, columns=colmn)
46
+
47
+
48
+ def do_sorting(df):
49
+ df.sort_values(["ymin", "xmin"], ascending=True, inplace=True)
50
+ df["idx"] = df.index
51
+ if "line_number" in df.columns:
52
+ print("line number removed")
53
+ df.drop("line_number", axis=1, inplace=True)
54
+ req_colns = ["xmin", "ymin", "xmax", "ymax", "idx"]
55
+ temp_df = df.copy()
56
+ temp = bucket_sort(temp_df.copy(), req_colns)
57
+ df = df.merge(temp[["idx", "line_number"]], on="idx")
58
+ df.sort_values(["line_number", "xmin"], ascending=True, inplace=True)
59
+ df = df.reset_index(drop=True)
60
+ df = df.reset_index(drop=True)
61
+ return df
val.py ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 model accuracy on a custom dataset
4
+
5
+ Usage:
6
+ $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
7
+ """
8
+
9
+ import argparse
10
+ import json
11
+ import os
12
+ import sys
13
+ from pathlib import Path
14
+ from threading import Thread
15
+
16
+ import numpy as np
17
+ import torch
18
+ from tqdm import tqdm
19
+
20
+ FILE = Path(__file__).absolute()
21
+ sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
22
+
23
+ from models.experimental import attempt_load
24
+ from utils.callbacks import Callbacks
25
+ from utils.datasets import create_dataloader
26
+ from utils.general import (
27
+ box_iou,
28
+ check_dataset,
29
+ check_img_size,
30
+ check_requirements,
31
+ check_suffix,
32
+ check_yaml,
33
+ coco80_to_coco91_class,
34
+ colorstr,
35
+ increment_path,
36
+ non_max_suppression,
37
+ scale_coords,
38
+ set_logging,
39
+ xywh2xyxy,
40
+ xyxy2xywh,
41
+ )
42
+ from utils.metrics import ConfusionMatrix, ap_per_class
43
+ from utils.plots import output_to_target, plot_images, plot_study_txt
44
+ from utils.torch_utils import select_device, time_sync
45
+
46
+
47
+ def save_one_txt(predn, save_conf, shape, file):
48
+ # Save one txt result
49
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
50
+ for *xyxy, conf, cls in predn.tolist():
51
+ xywh = (
52
+ (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
53
+ ) # normalized xywh
54
+ line = (
55
+ (cls, *xywh, conf) if save_conf else (cls, *xywh)
56
+ ) # label format
57
+ with open(file, "a") as f:
58
+ f.write(("%g " * len(line)).rstrip() % line + "\n")
59
+
60
+
61
+ def save_one_json(predn, jdict, path, class_map):
62
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
63
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
64
+ box = xyxy2xywh(predn[:, :4]) # xywh
65
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
66
+ for p, b in zip(predn.tolist(), box.tolist()):
67
+ jdict.append(
68
+ {
69
+ "image_id": image_id,
70
+ "category_id": class_map[int(p[5])],
71
+ "bbox": [round(x, 3) for x in b],
72
+ "score": round(p[4], 5),
73
+ }
74
+ )
75
+
76
+
77
+ def process_batch(detections, labels, iouv):
78
+ """
79
+ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
80
+ Arguments:
81
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
82
+ labels (Array[M, 5]), class, x1, y1, x2, y2
83
+ Returns:
84
+ correct (Array[N, 10]), for 10 IoU levels
85
+ """
86
+ correct = torch.zeros(
87
+ detections.shape[0],
88
+ iouv.shape[0],
89
+ dtype=torch.bool,
90
+ device=iouv.device,
91
+ )
92
+ iou = box_iou(labels[:, 1:], detections[:, :4])
93
+ x = torch.where(
94
+ (iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])
95
+ ) # IoU above threshold and classes match
96
+ if x[0].shape[0]:
97
+ matches = (
98
+ torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1)
99
+ .cpu()
100
+ .numpy()
101
+ ) # [label, detection, iou]
102
+ if x[0].shape[0] > 1:
103
+ matches = matches[matches[:, 2].argsort()[::-1]]
104
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
105
+ # matches = matches[matches[:, 2].argsort()[::-1]]
106
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
107
+ matches = torch.Tensor(matches).to(iouv.device)
108
+ correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
109
+ return correct
110
+
111
+
112
+ @torch.no_grad()
113
+ def run(
114
+ data,
115
+ weights=None, # model.pt path(s)
116
+ batch_size=32, # batch size
117
+ imgsz=640, # inference size (pixels)
118
+ conf_thres=0.001, # confidence threshold
119
+ iou_thres=0.6, # NMS IoU threshold
120
+ task="val", # train, val, test, speed or study
121
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
122
+ single_cls=False, # treat as single-class dataset
123
+ augment=False, # augmented inference
124
+ verbose=False, # verbose output
125
+ save_txt=False, # save results to *.txt
126
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
127
+ save_conf=False, # save confidences in --save-txt labels
128
+ save_json=False, # save a COCO-JSON results file
129
+ project="runs/val", # save to project/name
130
+ name="exp", # save to project/name
131
+ exist_ok=False, # existing project/name ok, do not increment
132
+ half=True, # use FP16 half-precision inference
133
+ model=None,
134
+ dataloader=None,
135
+ save_dir=Path(""),
136
+ plots=True,
137
+ callbacks=Callbacks(),
138
+ compute_loss=None,
139
+ ):
140
+ # Initialize/load model and set device
141
+ training = model is not None
142
+ if training: # called by train.py
143
+ device = next(model.parameters()).device # get model device
144
+
145
+ else: # called directly
146
+ device = select_device(device, batch_size=batch_size)
147
+
148
+ # Directories
149
+ save_dir = increment_path(
150
+ Path(project) / name, exist_ok=exist_ok
151
+ ) # increment run
152
+ (save_dir / "labels" if save_txt else save_dir).mkdir(
153
+ parents=True, exist_ok=True
154
+ ) # make dir
155
+
156
+ # Load model
157
+ check_suffix(weights, ".pt")
158
+ model = attempt_load(weights, map_location=device) # load FP32 model
159
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
160
+ imgsz = check_img_size(imgsz, s=gs) # check image size
161
+
162
+ # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
163
+ # if device.type != 'cpu' and torch.cuda.device_count() > 1:
164
+ # model = nn.DataParallel(model)
165
+
166
+ # Data
167
+ data = check_dataset(data) # check
168
+
169
+ # Half
170
+ half &= device.type != "cpu" # half precision only supported on CUDA
171
+ if half:
172
+ model.half()
173
+
174
+ # Configure
175
+ model.eval()
176
+ is_coco = isinstance(data.get("val"), str) and data["val"].endswith(
177
+ "coco/val2017.txt"
178
+ ) # COCO dataset
179
+ nc = 1 if single_cls else int(data["nc"]) # number of classes
180
+ iouv = torch.linspace(0.5, 0.95, 10).to(
181
+ device
182
+ ) # iou vector for mAP@0.5:0.95
183
+ niou = iouv.numel()
184
+
185
+ # Dataloader
186
+ if not training:
187
+ if device.type != "cpu":
188
+ model(
189
+ torch.zeros(1, 3, imgsz, imgsz)
190
+ .to(device)
191
+ .type_as(next(model.parameters()))
192
+ ) # run once
193
+ task = (
194
+ task if task in ("train", "val", "test") else "val"
195
+ ) # path to train/val/test images
196
+ dataloader = create_dataloader(
197
+ data[task],
198
+ imgsz,
199
+ batch_size,
200
+ gs,
201
+ single_cls,
202
+ pad=0.5,
203
+ rect=True,
204
+ prefix=colorstr(f"{task}: "),
205
+ )[0]
206
+
207
+ seen = 0
208
+ confusion_matrix = ConfusionMatrix(nc=nc)
209
+ names = {
210
+ k: v
211
+ for k, v in enumerate(
212
+ model.names if hasattr(model, "names") else model.module.names
213
+ )
214
+ }
215
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
216
+ s = ("%20s" + "%11s" * 6) % (
217
+ "Class",
218
+ "Images",
219
+ "Labels",
220
+ "P",
221
+ "R",
222
+ "mAP@.5",
223
+ "mAP@.5:.95",
224
+ )
225
+ dt, p, r, f1, mp, mr, map50, map = (
226
+ [0.0, 0.0, 0.0],
227
+ 0.0,
228
+ 0.0,
229
+ 0.0,
230
+ 0.0,
231
+ 0.0,
232
+ 0.0,
233
+ 0.0,
234
+ )
235
+ loss = torch.zeros(3, device=device)
236
+ jdict, stats, ap, ap_class = [], [], [], []
237
+ for batch_i, (img, targets, paths, shapes) in enumerate(
238
+ tqdm(dataloader, desc=s)
239
+ ):
240
+ t1 = time_sync()
241
+ img = img.to(device, non_blocking=True)
242
+ img = img.half() if half else img.float() # uint8 to fp16/32
243
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
244
+ targets = targets.to(device)
245
+ nb, _, height, width = img.shape # batch size, channels, height, width
246
+ t2 = time_sync()
247
+ dt[0] += t2 - t1
248
+
249
+ # Run model
250
+ out, train_out = model(
251
+ img, augment=augment
252
+ ) # inference and training outputs
253
+ dt[1] += time_sync() - t2
254
+
255
+ # Compute loss
256
+ if compute_loss:
257
+ loss += compute_loss([x.float() for x in train_out], targets)[
258
+ 1
259
+ ] # box, obj, cls
260
+
261
+ # Run NMS
262
+ targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(
263
+ device
264
+ ) # to pixels
265
+ lb = (
266
+ [targets[targets[:, 0] == i, 1:] for i in range(nb)]
267
+ if save_hybrid
268
+ else []
269
+ ) # for autolabelling
270
+ t3 = time_sync()
271
+ out = non_max_suppression(
272
+ out,
273
+ conf_thres,
274
+ iou_thres,
275
+ labels=lb,
276
+ multi_label=True,
277
+ agnostic=single_cls,
278
+ )
279
+ dt[2] += time_sync() - t3
280
+
281
+ # Statistics per image
282
+ for si, pred in enumerate(out):
283
+ labels = targets[targets[:, 0] == si, 1:]
284
+ nl = len(labels)
285
+ tcls = labels[:, 0].tolist() if nl else [] # target class
286
+ path, shape = Path(paths[si]), shapes[si][0]
287
+ seen += 1
288
+
289
+ if len(pred) == 0:
290
+ if nl:
291
+ stats.append(
292
+ (
293
+ torch.zeros(0, niou, dtype=torch.bool),
294
+ torch.Tensor(),
295
+ torch.Tensor(),
296
+ tcls,
297
+ )
298
+ )
299
+ continue
300
+
301
+ # Predictions
302
+ if single_cls:
303
+ pred[:, 5] = 0
304
+ predn = pred.clone()
305
+ scale_coords(
306
+ img[si].shape[1:], predn[:, :4], shape, shapes[si][1]
307
+ ) # native-space pred
308
+
309
+ # Evaluate
310
+ if nl:
311
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
312
+ scale_coords(
313
+ img[si].shape[1:], tbox, shape, shapes[si][1]
314
+ ) # native-space labels
315
+ labelsn = torch.cat(
316
+ (labels[:, 0:1], tbox), 1
317
+ ) # native-space labels
318
+ correct = process_batch(predn, labelsn, iouv)
319
+ if plots:
320
+ confusion_matrix.process_batch(predn, labelsn)
321
+ else:
322
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
323
+ stats.append(
324
+ (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)
325
+ ) # (correct, conf, pcls, tcls)
326
+
327
+ # Save/log
328
+ if save_txt:
329
+ save_one_txt(
330
+ predn,
331
+ save_conf,
332
+ shape,
333
+ file=save_dir / "labels" / (path.stem + ".txt"),
334
+ )
335
+ if save_json:
336
+ save_one_json(
337
+ predn, jdict, path, class_map
338
+ ) # append to COCO-JSON dictionary
339
+ callbacks.run(
340
+ "on_val_image_end", pred, predn, path, names, img[si]
341
+ )
342
+
343
+ # Plot images
344
+ if plots and batch_i < 3:
345
+ f = save_dir / f"val_batch{batch_i}_labels.jpg" # labels
346
+ Thread(
347
+ target=plot_images,
348
+ args=(img, targets, paths, f, names),
349
+ daemon=True,
350
+ ).start()
351
+ f = save_dir / f"val_batch{batch_i}_pred.jpg" # predictions
352
+ Thread(
353
+ target=plot_images,
354
+ args=(img, output_to_target(out), paths, f, names),
355
+ daemon=True,
356
+ ).start()
357
+
358
+ # Compute statistics
359
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
360
+ if len(stats) and stats[0].any():
361
+ p, r, ap, f1, ap_class = ap_per_class(
362
+ *stats, plot=plots, save_dir=save_dir, names=names
363
+ )
364
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
365
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
366
+ nt = np.bincount(
367
+ stats[3].astype(np.int64), minlength=nc
368
+ ) # number of targets per class
369
+ else:
370
+ nt = torch.zeros(1)
371
+
372
+ # Print results
373
+ pf = "%20s" + "%11i" * 2 + "%11.3g" * 4 # print format
374
+ print(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
375
+
376
+ # Print results per class
377
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
378
+ for i, c in enumerate(ap_class):
379
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
380
+
381
+ # Print speeds
382
+ t = tuple(x / seen * 1e3 for x in dt) # speeds per image
383
+ if not training:
384
+ shape = (batch_size, 3, imgsz, imgsz)
385
+ print(
386
+ f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}"
387
+ % t
388
+ )
389
+
390
+ # Plots
391
+ if plots:
392
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
393
+ callbacks.run("on_val_end")
394
+
395
+ # Save JSON
396
+ if save_json and len(jdict):
397
+ w = (
398
+ Path(weights[0] if isinstance(weights, list) else weights).stem
399
+ if weights is not None
400
+ else ""
401
+ ) # weights
402
+ anno_json = str(
403
+ Path(data.get("path", "../coco"))
404
+ / "annotations/instances_val2017.json"
405
+ ) # annotations json
406
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
407
+ print(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
408
+ with open(pred_json, "w") as f:
409
+ json.dump(jdict, f)
410
+
411
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
412
+ check_requirements(["pycocotools"])
413
+ from pycocotools.coco import COCO
414
+ from pycocotools.cocoeval import COCOeval
415
+
416
+ anno = COCO(anno_json) # init annotations api
417
+ pred = anno.loadRes(pred_json) # init predictions api
418
+ eval = COCOeval(anno, pred, "bbox")
419
+ if is_coco:
420
+ eval.params.imgIds = [
421
+ int(Path(x).stem) for x in dataloader.dataset.img_files
422
+ ] # image IDs to evaluate
423
+ eval.evaluate()
424
+ eval.accumulate()
425
+ eval.summarize()
426
+ map, map50 = eval.stats[
427
+ :2
428
+ ] # update results (mAP@0.5:0.95, mAP@0.5)
429
+ except Exception as e:
430
+ print(f"pycocotools unable to run: {e}")
431
+
432
+ # Return results
433
+ model.float() # for training
434
+ if not training:
435
+ s = (
436
+ f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
437
+ if save_txt
438
+ else ""
439
+ )
440
+ print(f"Results saved to {colorstr('bold', save_dir)}{s}")
441
+ maps = np.zeros(nc) + map
442
+ for i, c in enumerate(ap_class):
443
+ maps[c] = ap[i]
444
+ return (
445
+ (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()),
446
+ maps,
447
+ t,
448
+ )
449
+
450
+
451
+ def parse_opt():
452
+ parser = argparse.ArgumentParser(prog="val.py")
453
+ parser.add_argument(
454
+ "--data",
455
+ type=str,
456
+ default="data/coco128.yaml",
457
+ help="dataset.yaml path",
458
+ )
459
+ parser.add_argument(
460
+ "--weights",
461
+ nargs="+",
462
+ type=str,
463
+ default="yolov5s.pt",
464
+ help="model.pt path(s)",
465
+ )
466
+ parser.add_argument(
467
+ "--batch-size", type=int, default=32, help="batch size"
468
+ )
469
+ parser.add_argument(
470
+ "--imgsz",
471
+ "--img",
472
+ "--img-size",
473
+ type=int,
474
+ default=640,
475
+ help="inference size (pixels)",
476
+ )
477
+ parser.add_argument(
478
+ "--conf-thres", type=float, default=0.001, help="confidence threshold"
479
+ )
480
+ parser.add_argument(
481
+ "--iou-thres", type=float, default=0.6, help="NMS IoU threshold"
482
+ )
483
+ parser.add_argument(
484
+ "--task", default="val", help="train, val, test, speed or study"
485
+ )
486
+ parser.add_argument(
487
+ "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
488
+ )
489
+ parser.add_argument(
490
+ "--single-cls",
491
+ action="store_true",
492
+ help="treat as single-class dataset",
493
+ )
494
+ parser.add_argument(
495
+ "--augment", action="store_true", help="augmented inference"
496
+ )
497
+ parser.add_argument(
498
+ "--verbose", action="store_true", help="report mAP by class"
499
+ )
500
+ parser.add_argument(
501
+ "--save-txt", action="store_true", help="save results to *.txt"
502
+ )
503
+ parser.add_argument(
504
+ "--save-hybrid",
505
+ action="store_true",
506
+ help="save label+prediction hybrid results to *.txt",
507
+ )
508
+ parser.add_argument(
509
+ "--save-conf",
510
+ action="store_true",
511
+ help="save confidences in --save-txt labels",
512
+ )
513
+ parser.add_argument(
514
+ "--save-json",
515
+ action="store_true",
516
+ help="save a COCO-JSON results file",
517
+ )
518
+ parser.add_argument(
519
+ "--project", default="runs/val", help="save to project/name"
520
+ )
521
+ parser.add_argument("--name", default="exp", help="save to project/name")
522
+ parser.add_argument(
523
+ "--exist-ok",
524
+ action="store_true",
525
+ help="existing project/name ok, do not increment",
526
+ )
527
+ parser.add_argument(
528
+ "--half", action="store_true", help="use FP16 half-precision inference"
529
+ )
530
+ opt = parser.parse_args()
531
+ opt.save_json |= opt.data.endswith("coco.yaml")
532
+ opt.save_txt |= opt.save_hybrid
533
+ opt.data = check_yaml(opt.data) # check YAML
534
+ return opt
535
+
536
+
537
+ def main(opt):
538
+ set_logging()
539
+ print(
540
+ colorstr("val: ") + ", ".join(f"{k}={v}" for k, v in vars(opt).items())
541
+ )
542
+ check_requirements(
543
+ requirements=FILE.parent / "requirements.txt",
544
+ exclude=("tensorboard", "thop"),
545
+ )
546
+
547
+ if opt.task in ("train", "val", "test"): # run normally
548
+ run(**vars(opt))
549
+
550
+ elif opt.task == "speed": # speed benchmarks
551
+ for w in (
552
+ opt.weights if isinstance(opt.weights, list) else [opt.weights]
553
+ ):
554
+ run(
555
+ opt.data,
556
+ weights=w,
557
+ batch_size=opt.batch_size,
558
+ imgsz=opt.imgsz,
559
+ conf_thres=0.25,
560
+ iou_thres=0.45,
561
+ save_json=False,
562
+ plots=False,
563
+ )
564
+
565
+ elif opt.task == "study": # run over a range of settings and save/plot
566
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
567
+ x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
568
+ for w in (
569
+ opt.weights if isinstance(opt.weights, list) else [opt.weights]
570
+ ):
571
+ f = f"study_{Path(opt.data).stem}_{Path(w).stem}.txt" # filename to save to
572
+ y = [] # y axis
573
+ for i in x: # img-size
574
+ print(f"\nRunning {f} point {i}...")
575
+ r, _, t = run(
576
+ opt.data,
577
+ weights=w,
578
+ batch_size=opt.batch_size,
579
+ imgsz=i,
580
+ conf_thres=opt.conf_thres,
581
+ iou_thres=opt.iou_thres,
582
+ save_json=opt.save_json,
583
+ plots=False,
584
+ )
585
+ y.append(r + t) # results and times
586
+ np.savetxt(f, y, fmt="%10.4g") # save
587
+ os.system("zip -r study.zip study_*.txt")
588
+ plot_study_txt(x=x) # plot
589
+
590
+
591
+ if __name__ == "__main__":
592
+ opt = parse_opt()
593
+ main(opt)
yolo_inference_util.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ from pathlib import Path
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+ import torch.backends.cudnn as cudnn
9
+
10
+ from models.experimental import attempt_load
11
+ from utils.datasets import LoadImages, LoadStreams
12
+ from utils.general import (
13
+ apply_classifier,
14
+ check_img_size,
15
+ check_imshow,
16
+ check_requirements,
17
+ check_suffix,
18
+ colorstr,
19
+ increment_path,
20
+ is_ascii,
21
+ non_max_suppression,
22
+ save_one_box,
23
+ scale_coords,
24
+ set_logging,
25
+ strip_optimizer,
26
+ xyxy2xywh,
27
+ )
28
+ from utils.plots import Annotator, colors
29
+ from utils.torch_utils import load_classifier, select_device, time_sync
30
+
31
+ # FILE = Path(__file__).resolve()
32
+ # ROOT = FILE.parents[0] # YOLOv5 root directory
33
+ # if str(ROOT) not in sys.path:
34
+ # sys.path.append(str(ROOT)) # add ROOT to PATH
35
+
36
+
37
+
38
+ @torch.no_grad()
39
+ def run_yolo_v5(
40
+ weights="yolov5s.pt", # model.pt path(s)
41
+ source="data/images", # file/dir/URL/glob, 0 for webcam
42
+ imgsz=640, # inference size (pixels)
43
+ conf_thres=0.25, # confidence threshold
44
+ iou_thres=0.45, # NMS IOU threshold
45
+ max_det=1000, # maximum detections per image
46
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
47
+ view_img=False, # show results
48
+ save_txt=False, # save results to *.txt
49
+ save_conf=False, # save confidences in --save-txt labels
50
+ save_crop=False, # save cropped prediction boxes
51
+ nosave=False, # do not save images/videos
52
+ classes=None, # filter by class: --class 0, or --class 0 2 3
53
+ agnostic_nms=False, # class-agnostic NMS
54
+ augment=False, # augmented inference
55
+ visualize=False, # visualize features
56
+ update=False, # update all models
57
+ project="runs/detect", # save results to project/name
58
+ name="exp", # save results to project/name
59
+ exist_ok=False, # existing project/name ok, do not increment
60
+ line_thickness=3, # bounding box thickness (pixels)
61
+ hide_labels=False, # hide labels
62
+ hide_conf=False, # hide confidences
63
+ half=False, # use FP16 half-precision inference
64
+ ):
65
+ save_img = not nosave and not source.endswith(
66
+ ".txt"
67
+ ) # save inference images
68
+ webcam = (
69
+ source.isnumeric()
70
+ or source.endswith(".txt")
71
+ or source.lower().startswith(
72
+ ("rtsp://", "rtmp://", "http://", "https://")
73
+ )
74
+ )
75
+
76
+ # Directories
77
+ save_dir = increment_path(
78
+ Path(project) / name, exist_ok=exist_ok
79
+ ) # increment run
80
+ (save_dir / "labels" if save_txt else save_dir).mkdir(
81
+ parents=True, exist_ok=True
82
+ ) # make dir
83
+
84
+ # Initialize
85
+ set_logging()
86
+ device = select_device(device)
87
+ half &= device.type != "cpu" # half precision only supported on CUDA
88
+
89
+ # Load model
90
+ w = weights[0] if isinstance(weights, list) else weights
91
+ classify, suffix, suffixes = (
92
+ False,
93
+ Path(w).suffix.lower(),
94
+ [".pt", ".onnx", ".tflite", ".pb", ""],
95
+ )
96
+ check_suffix(w, suffixes) # check weights have acceptable suffix
97
+ pt, onnx, tflite, pb, saved_model = (
98
+ suffix == x for x in suffixes
99
+ ) # backend booleans
100
+ stride, names = 64, [f"class{i}" for i in range(1000)] # assign defaults
101
+ if pt:
102
+ model = attempt_load(weights, map_location=device) # load FP32 model
103
+ stride = int(model.stride.max()) # model stride
104
+ names = (
105
+ model.module.names if hasattr(model, "module") else model.names
106
+ ) # get class names
107
+ if half:
108
+ model.half() # to FP16
109
+ if classify: # second-stage classifier
110
+ modelc = load_classifier(name="resnet50", n=2) # initialize
111
+ modelc.load_state_dict(
112
+ torch.load("resnet50.pt", map_location=device)["model"]
113
+ ).to(device).eval()
114
+ elif onnx:
115
+ check_requirements(("onnx", "onnxruntime"))
116
+ import onnxruntime
117
+
118
+ session = onnxruntime.InferenceSession(w, None)
119
+ else: # TensorFlow models
120
+ check_requirements(("tensorflow>=2.4.1",))
121
+ import tensorflow as tf
122
+
123
+ if (
124
+ pb
125
+ ): # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
126
+
127
+ def wrap_frozen_graph(gd, inputs, outputs):
128
+ x = tf.compat.v1.wrap_function(
129
+ lambda: tf.compat.v1.import_graph_def(gd, name=""), []
130
+ ) # wrapped import
131
+ return x.prune(
132
+ tf.nest.map_structure(x.graph.as_graph_element, inputs),
133
+ tf.nest.map_structure(x.graph.as_graph_element, outputs),
134
+ )
135
+
136
+ graph_def = tf.Graph().as_graph_def()
137
+ graph_def.ParseFromString(open(w, "rb").read())
138
+ frozen_func = wrap_frozen_graph(
139
+ gd=graph_def, inputs="x:0", outputs="Identity:0"
140
+ )
141
+ elif saved_model:
142
+ model = tf.keras.models.load_model(w)
143
+ elif tflite:
144
+ interpreter = tf.lite.Interpreter(
145
+ model_path=w
146
+ ) # load TFLite model
147
+ interpreter.allocate_tensors() # allocate
148
+ input_details = interpreter.get_input_details() # inputs
149
+ output_details = interpreter.get_output_details() # outputs
150
+ int8 = (
151
+ input_details[0]["dtype"] == np.uint8
152
+ ) # is TFLite quantized uint8 model
153
+ imgsz = check_img_size(imgsz, s=stride) # check image size
154
+ ascii = is_ascii(names) # names are ascii (use PIL for UTF-8)
155
+
156
+ # Dataloader
157
+ print("Loading data from the source", source)
158
+ if webcam:
159
+ view_img = check_imshow()
160
+ cudnn.benchmark = (
161
+ True # set True to speed up constant image size inference
162
+ )
163
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
164
+ bs = len(dataset) # batch_size
165
+ else:
166
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
167
+ bs = 1 # batch_size
168
+ vid_path, vid_writer = [None] * bs, [None] * bs
169
+
170
+ # Run inference
171
+ if pt and device.type != "cpu":
172
+ model(
173
+ torch.zeros(1, 3, *imgsz)
174
+ .to(device)
175
+ .type_as(next(model.parameters()))
176
+ ) # run once
177
+ dt, seen = [0.0, 0.0, 0.0], 0
178
+ results = []
179
+ for path, img, im0s, vid_cap in dataset:
180
+ t1 = time_sync()
181
+ if onnx:
182
+ img = img.astype("float32")
183
+ else:
184
+ img = torch.from_numpy(img).to(device)
185
+ img = img.half() if half else img.float() # uint8 to fp16/32
186
+ img = img / 255.0 # 0 - 255 to 0.0 - 1.0
187
+ if len(img.shape) == 3:
188
+ img = img[None] # expand for batch dim
189
+ t2 = time_sync()
190
+ dt[0] += t2 - t1
191
+
192
+ # Inference
193
+ if pt:
194
+ visualize = (
195
+ increment_path(save_dir / Path(path).stem, mkdir=True)
196
+ if visualize
197
+ else False
198
+ )
199
+ pred = model(img, augment=augment, visualize=visualize)[0]
200
+ elif onnx:
201
+ pred = torch.tensor(
202
+ session.run(
203
+ [session.get_outputs()[0].name],
204
+ {session.get_inputs()[0].name: img},
205
+ )
206
+ )
207
+ else: # tensorflow model (tflite, pb, saved_model)
208
+ imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy
209
+ if pb:
210
+ pred = frozen_func(x=tf.constant(imn)).numpy()
211
+ elif saved_model:
212
+ pred = model(imn, training=False).numpy()
213
+ elif tflite:
214
+ if int8:
215
+ scale, zero_point = input_details[0]["quantization"]
216
+ imn = (imn / scale + zero_point).astype(
217
+ np.uint8
218
+ ) # de-scale
219
+ interpreter.set_tensor(input_details[0]["index"], imn)
220
+ interpreter.invoke()
221
+ pred = interpreter.get_tensor(output_details[0]["index"])
222
+ if int8:
223
+ scale, zero_point = output_details[0]["quantization"]
224
+ pred = (
225
+ pred.astype(np.float32) - zero_point
226
+ ) * scale # re-scale
227
+ pred[..., 0] *= imgsz[1] # x
228
+ pred[..., 1] *= imgsz[0] # y
229
+ pred[..., 2] *= imgsz[1] # w
230
+ pred[..., 3] *= imgsz[0] # h
231
+ pred = torch.tensor(pred)
232
+ t3 = time_sync()
233
+ dt[1] += t3 - t2
234
+
235
+ # NMS
236
+ pred = non_max_suppression(
237
+ pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
238
+ )
239
+ dt[2] += time_sync() - t3
240
+
241
+ # Second-stage classifier (optional)
242
+ if classify:
243
+ pred = apply_classifier(pred, modelc, img, im0s)
244
+
245
+ # Process predictions
246
+ for i, det in enumerate(pred): # per image
247
+ seen += 1
248
+ if webcam: # batch_size >= 1
249
+ p, s, im0, frame = (
250
+ path[i],
251
+ f"{i}: ",
252
+ im0s[i].copy(),
253
+ dataset.count,
254
+ )
255
+ else:
256
+ p, s, im0, frame = (
257
+ path,
258
+ "",
259
+ im0s.copy(),
260
+ getattr(dataset, "frame", 0),
261
+ )
262
+
263
+ p = Path(p) # to Path
264
+ save_path = str(save_dir / p.name) # img.jpg
265
+ txt_path = str(save_dir / "labels" / p.stem) + (
266
+ "" if dataset.mode == "image" else f"_{frame}"
267
+ ) # img.txt
268
+ s += "%gx%g " % img.shape[2:] # print string
269
+ gn = torch.tensor(im0.shape)[
270
+ [1, 0, 1, 0]
271
+ ] # normalization gain whwh
272
+ imc = im0.copy() if save_crop else im0 # for save_crop
273
+ annotator = Annotator(
274
+ im0, line_width=line_thickness, pil=not ascii
275
+ )
276
+ if len(det):
277
+ # Rescale boxes from img_size to im0 size
278
+ det[:, :4] = scale_coords(
279
+ img.shape[2:], det[:, :4], im0.shape
280
+ ).round()
281
+ results.append((im0, det))
282
+ # Print results
283
+ for c in det[:, -1].unique():
284
+ n = (det[:, -1] == c).sum() # detections per class
285
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
286
+
287
+ # Write results
288
+ for *xyxy, conf, cls in reversed(det):
289
+ if save_txt: # Write to file
290
+ xywh = (
291
+ (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
292
+ .view(-1)
293
+ .tolist()
294
+ ) # normalized xywh
295
+ line = (
296
+ (cls, *xywh, conf) if save_conf else (cls, *xywh)
297
+ ) # label format
298
+ with open(txt_path + ".txt", "a") as f:
299
+ f.write(("%g " * len(line)).rstrip() % line + "\n")
300
+
301
+ if save_img or save_crop or view_img: # Add bbox to image
302
+ c = int(cls) # integer class
303
+ label = (
304
+ None
305
+ if hide_labels
306
+ else (
307
+ names[c]
308
+ if hide_conf
309
+ else f"{names[c]} {conf:.2f}"
310
+ )
311
+ )
312
+ annotator.box_label(xyxy, label, color=colors(c, True))
313
+ if save_crop:
314
+ save_one_box(
315
+ xyxy,
316
+ imc,
317
+ file=save_dir
318
+ / "crops"
319
+ / names[c]
320
+ / f"{p.stem}.jpg",
321
+ BGR=True,
322
+ )
323
+ # Print time (inference-only)
324
+ print(f"{s}Done. ({t3 - t2:.3f}s)")
325
+
326
+ # Stream results
327
+ im0 = annotator.result()
328
+ if view_img:
329
+ cv2.imshow(str(p), im0)
330
+ cv2.waitKey(1) # 1 millisecond
331
+
332
+ # Save results (image with detections)
333
+ if save_img:
334
+ if dataset.mode == "image":
335
+ cv2.imwrite(save_path, im0)
336
+ else: # 'video' or 'stream'
337
+ if vid_path[i] != save_path: # new video
338
+ vid_path[i] = save_path
339
+ if isinstance(vid_writer[i], cv2.VideoWriter):
340
+ vid_writer[
341
+ i
342
+ ].release() # release previous video writer
343
+ if vid_cap: # video
344
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
345
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
346
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
347
+ else: # stream
348
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
349
+ save_path += ".mp4"
350
+ vid_writer[i] = cv2.VideoWriter(
351
+ save_path,
352
+ cv2.VideoWriter_fourcc(*"mp4v"),
353
+ fps,
354
+ (w, h),
355
+ )
356
+ vid_writer[i].write(im0)
357
+
358
+ # Print results
359
+ t = tuple(x / seen * 1e3 for x in dt) # speeds per image
360
+ print(
361
+ f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
362
+ % t
363
+ )
364
+ return results
365
+ # if save_txt or save_img:
366
+ # s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
367
+ # print(f"Results saved to {colorstr('bold', save_dir)}{s}")
368
+ # if update:
369
+ # strip_optimizer(weights) # update model (to fix SourceChangeWarning)
yolov5s.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1610cfd81f8cab94254b35f6b7da2981fa40f93ad1bd3dd1803c52e7f44753e
3
+ size 14795158