File size: 5,582 Bytes
8e909d4
 
 
f99c7e8
611a237
8e909d4
 
 
611a237
8e909d4
 
 
 
 
611a237
8e909d4
 
 
 
 
 
 
 
 
611a237
8e909d4
 
 
611a237
8e909d4
 
 
611a237
8e909d4
 
611a237
8e909d4
 
611a237
8e909d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611a237
8e909d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192a5c6
8e909d4
192a5c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# import gradio as gr
# import spaces
# from huggingface_hub import hf_hub_download


# def download_models(model_id):
#     hf_hub_download("SakshiRathi77/void-space-detection", filename=f"{model_id}", local_dir=f"./")
#     return f"./{model_id}"

# @spaces.GPU
# def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold):
#     """
#     Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust 
#     the input size and apply test time augmentation.
    
#     :param model_path: Path to the YOLOv9 model file.
#     :param conf_threshold: Confidence threshold for NMS.
#     :param iou_threshold: IoU threshold for NMS.
#     :param img_path: Path to the image file.
#     :param size: Optional, input size for inference.
#     :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
#     """
#     # Import YOLOv9
#     import yolov9
    
#     # Load the model
#     model_path = download_models(model_id)
#     model = yolov9.load(model_path, device="cuda:0")
    
#     # Set model parameters
#     model.conf = conf_threshold
#     model.iou = iou_threshold
    
#     # Perform inference
#     results = model(img_path, size=image_size)

#     # Optionally, show detection bounding boxes on image
#     output = results.render()
    
#     return output[0]


# def app():
#     with gr.Blocks():
#         with gr.Row():
#             with gr.Column():
#                 img_path = gr.Image(type="filepath", label="Image")
#                 model_path = gr.Dropdown(
#                     label="Model",
#                     choices=[
#                         "state_dict.pt"
#                     ],
#                     value="state_dict.pt",
#                 )
#                 image_size = gr.Slider(
#                     label="Image Size",
#                     minimum=320,
#                     maximum=1280,
#                     step=32,
#                     value=640,
#                 )
#                 conf_threshold = gr.Slider(
#                     label="Confidence Threshold",
#                     minimum=0.1,
#                     maximum=1.0,
#                     step=0.1,
#                     value=0.4,
#                 )
#                 iou_threshold = gr.Slider(
#                     label="IoU Threshold",
#                     minimum=0.1,
#                     maximum=1.0,
#                     step=0.1,
#                     value=0.5,
#                 )
#                 yolov9_infer = gr.Button(value="Inference")

#             with gr.Column():
#                 output_numpy = gr.Image(type="numpy",label="Output")

#         yolov9_infer.click(
#             fn=yolov9_inference,
#             inputs=[
#                 img_path,
#                 model_path,
#                 image_size,
#                 conf_threshold,
#                 iou_threshold,
#             ],
#             outputs=[output_numpy],
#         )
        
#         # gr.Examples(
#         #     examples=[
#         #         [
#         #             "data/zidane.jpg",
#         #             "gelan-e.pt",
#         #             640,
#         #             0.4,
#         #             0.5,
#         #         ],
#         #         [
#         #             "data/huggingface.jpg",
#         #             "yolov9-c.pt",
#         #             640,
#         #             0.4,
#         #             0.5,
#         #         ],
#         #     ],
#         #     fn=yolov9_inference,
#         #     inputs=[
#         #         img_path,
#         #         model_path,
#         #         image_size,
#         #         conf_threshold,
#         #         iou_threshold,
#         #     ],
#         #     outputs=[output_numpy],
#         #     cache_examples=True,
#         # )


# gradio_app = gr.Blocks()
# with gradio_app:
#     gr.HTML(
#         """
#     <h1 style='text-align: center'>
#     YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
#     </h1>
#     """)
#     gr.HTML(
#         """
#         <h3 style='text-align: center'>
#         Follow me for more!
#         </h3>
#         """)
#     with gr.Row():
#         with gr.Column():
#             app()

# gradio_app.launch(debug=True)

# make sure you have the following dependencies
import gradio as gr
import torch
from torchvision import transforms
from PIL import Image

# Load the YOLOv9 model
model_path = "best.pt"  # Replace with the path to your YOLOv9 model
model = torch.load(model_path)

# Define preprocessing transforms
preprocess = transforms.Compose([
    transforms.Resize((640, 640)),  # Resize image to model input size
    transforms.ToTensor(),           # Convert image to tensor
])

# Define a function to perform inference
def detect_void(image):
    # Preprocess the input image
    image = Image.fromarray(image)
    image = preprocess(image).unsqueeze(0)  # Add batch dimension

    # Perform inference
    with torch.no_grad():
        output = model(image)

    # Post-process the output if needed
    # For example, draw bounding boxes on the image

    # Convert the image back to numpy array
    # and return the result
    return output.squeeze().numpy()

# Define Gradio interface components
input_image = gr.inputs.Image(shape=(640, 640), label="Input Image")
output_image = gr.outputs.Image(label="Output Image")

# Create Gradio interface
gr.Interface(fn=detect_void, inputs=input_image, outputs=output_image, title="Void Detection App").launch()