import gradio as gr import spaces from huggingface_hub import hf_hub_download def download_models(model_id): hf_hub_download("SakshiRathi77/void-space-detection", filename=f"{model_id}", local_dir=f"./") return f"./{model_id}" def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): """ Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust the input size and apply test time augmentation. :param model_path: Path to the YOLOv9 model file. :param conf_threshold: Confidence threshold for NMS. :param iou_threshold: IoU threshold for NMS. :param img_path: Path to the image file. :param size: Optional, input size for inference. :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. """ # Import YOLOv9 import yolov9 # Load the model model_path = download_models("best.pt") model = yolov9.load(model_path, device="cpu") # Set model parameters model.conf = conf_threshold model.iou = iou_threshold # Perform inference results = model(img_path, size=image_size) # Optionally, show detection bounding boxes on image output = results.render() return output[0] def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): img_path = gr.Image(type="filepath", label="Image") image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5, ) yolov9_infer = gr.Button(value="Inference") with gr.Column(): output_numpy = gr.Image(type="numpy",label="Output") yolov9_infer.click( fn=yolov9_inference, inputs=[ img_path, image_size, conf_threshold, iou_threshold, ], outputs=[output_numpy], ) fn=yolov9_inference, inputs=[ img_path, model_path, image_size, conf_threshold, iou_threshold, ], outputs=[output_numpy], ) gradio_app = gr.Blocks() with gradio_app: gr.HTML( """

YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

""") gr.HTML( """

Follow me for more!

""") with gr.Row(): with gr.Column(): app() gradio_app.launch(debug=True)